Displaying similar documents to “Remarks on the complementability of spaces of Bochner integrable functions in spaces of vector measures”

On ultrapowers of Banach spaces of type

Antonio Avilés, Félix Cabello Sánchez, Jesús M. F. Castillo, Manuel González, Yolanda Moreno (2013)

Fundamenta Mathematicae

Similarity:

We prove that no ultraproduct of Banach spaces via a countably incomplete ultrafilter can contain c₀ complemented. This shows that a "result" widely used in the theory of ultraproducts is wrong. We then amend a number of results whose proofs have been infected by that statement. In particular we provide proofs for the following statements: (i) All M-spaces, in particular all C(K)-spaces, have ultrapowers isomorphic to ultrapowers of c₀, as also do all their complemented subspaces isomorphic...

Banach spaces widely complemented in each other

Elói Medina Galego (2013)

Colloquium Mathematicae

Similarity:

Suppose that X and Y are Banach spaces that embed complementably into each other. Are X and Y necessarily isomorphic? In this generality, the answer is no, as proved by W. T. Gowers in 1996. However, if X contains a complemented copy of its square X², then X is isomorphic to Y whenever there exists p ∈ ℕ such that X p can be decomposed into a direct sum of X p - 1 and Y. Motivated by this fact, we introduce the concept of (p,q,r) widely complemented subspaces in Banach spaces, where p,q and...

On copies of c 0 in the bounded linear operator space

Juan Carlos Ferrando, J. M. Amigó (2000)

Czechoslovak Mathematical Journal

Similarity:

In this note we study some properties concerning certain copies of the classic Banach space c 0 in the Banach space X , Y of all bounded linear operators between a normed space X and a Banach space Y equipped with the norm of the uniform convergence of operators.

The structure of Lindenstrauss-Pełczyński spaces

Jesús M. F. Castillo, Yolanda Moreno, Jesús Suárez (2009)

Studia Mathematica

Similarity:

Lindenstrauss-Pełczyński (for short ℒ) spaces were introduced by these authors [Studia Math. 174 (2006)] as those Banach spaces X such that every operator from a subspace of c₀ into X can be extended to the whole c₀. Here we obtain the following structure theorem: a separable Banach space X is an ℒ-space if and only if every subspace of c₀ is placed in X in a unique position, up to automorphisms of X. This, in combination with a result of Kalton [New York J. Math. 13 (2007)], provides...

On complemented copies of c₀(ω₁) in C(Kⁿ) spaces

Leandro Candido, Piotr Koszmider (2016)

Studia Mathematica

Similarity:

Given a compact Hausdorff space K we consider the Banach space of real continuous functions C(Kⁿ) or equivalently the n-fold injective tensor product ̂ ε n C ( K ) or the Banach space of vector valued continuous functions C(K,C(K,C(K...,C(K)...). We address the question of the existence of complemented copies of c₀(ω₁) in ̂ ε n C ( K ) under the hypothesis that C(K) contains such a copy. This is related to the results of E. Saab and P. Saab that X ̂ ε Y contains a complemented copy of c₀ if one of the infinite-dimensional...

Isomorphic and isometric copies of ( Γ ) in duals of Banach spaces and Banach lattices

Marek Wójtowicz (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X and E be a Banach space and a real Banach lattice, respectively, and let Γ denote an infinite set. We give concise proofs of the following results: (1) The dual space X * contains an isometric copy of c 0 iff X * contains an isometric copy of , and (2) E * contains a lattice-isometric copy of c 0 ( Γ ) iff E * contains a lattice-isometric copy of ( Γ ) .