Displaying similar documents to “Combined finite element -- finite volume method (convergence analysis)”

Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems

Gert Lube (1994)

Banach Center Publications

Similarity:

In this paper, we analyze a class of stabilized finite element formulations used in computation of (i) second order elliptic boundary value problems (diffusion-convection-reaction model) and (ii) the Navier-Stokes problem (incompressible flow model). These stabilization techniques prevent numerical instabilities that might be generated by dominant convection/reaction terms in (i), (ii) or by inappropriate combinations of velocity/pressure interpolation functions in (ii). Stability and...

A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations

Vivette Girault, Béatrice Rivière, Mary F. Wheeler (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper we solve the time-dependent incompressible Navier-Stokes equations by splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the pressure. We present some numerical experiments.

Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory

Akira Mizutani, Norikazu Saito, Takashi Suzuki (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and L 1 contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in L 1 and L , respectively, of the scheme are established. Under certain hypotheses on the data, we also derive L 1 convergence without any convergence...

Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault, Larkin Ridgway Scott (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the...