Orlicz boundedness for certain classical operators
E. Harboure, O. Salinas, B. Viviani (2002)
Colloquium Mathematicae
Similarity:
Let ϕ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator , associated to an open bounded set Ω, to be bounded from the Orlicz space into , 0 ≤ α < n. For functions ϕ of finite upper type these results can be extended to the Hilbert transform f̃ on the one-dimensional torus and to the fractional integral operator...