Displaying similar documents to “Relations between weighted Orlicz and B M O φ spaces through fractional integrals”

Orlicz boundedness for certain classical operators

E. Harboure, O. Salinas, B. Viviani (2002)

Colloquium Mathematicae

Similarity:

Let ϕ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator M Ω α , associated to an open bounded set Ω, to be bounded from the Orlicz space L ψ ( Ω ) into L ϕ ( Ω ) , 0 ≤ α < n. For functions ϕ of finite upper type these results can be extended to the Hilbert transform f̃ on the one-dimensional torus and to the fractional integral operator...

Weighted endpoint estimates for commutators of fractional integrals

David Cruz-Uribe, Alberto Fiorenza (2007)

Czechoslovak Mathematical Journal

Similarity:

Given α , 0 < α < n , and b B M O , we give sufficient conditions on weights for the commutator of the fractional integral operator, [ b , I α ] , to satisfy weighted endpoint inequalities on n and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on n .

Gagliardo-Nirenberg inequalities in logarithmic spaces

Agnieszka Kałamajska, Katarzyna Pietruska-Pałuba (2006)

Colloquium Mathematicae

Similarity:

We obtain interpolation inequalities for derivatives: M q , α ( | f ( x ) | ) d x C [ M p , β ( Φ ( x , | f | , | ( 2 ) f | ) ) d x + M r , γ ( Φ ( x , | f | , | ( 2 ) f | ) ) d x ] , and their counterparts expressed in Orlicz norms: ||∇f||²(q,α) ≤ C||Φ₁(x,|f|,|∇(2)f|)||(p,β) ||Φ₂(x,|f|,|∇(2)f|)||(r,γ) , where | | · | | ( s , κ ) is the Orlicz norm relative to the function M s , κ ( t ) = t s ( l n ( 2 + t ) ) κ . The parameters p,q,r,α,β,γ and the Carathéodory functions Φ₁,Φ₂ are supposed to satisfy certain consistency conditions. Some of the classical Gagliardo-Nirenberg inequalities follow as a special case. Gagliardo-Nirenberg inequalities in logarithmic spaces...

Fenchel-Orlicz spaces

Barry Turett

Similarity:

CONTENTSIntroduction............................................................................... 51. Definitions and preliminary results......................................... 72. Completeness of L Φ ( μ , ) .............................. 93. Linear functionals on L Φ ( μ , ) ....................... 264. Geometry of Fenchel-Orlicz spaces........................................ 41References....................................................................................... 54

Dual spaces to Orlicz-Lorentz spaces

Anna Kamińska, Karol Leśnik, Yves Raynaud (2014)

Studia Mathematica

Similarity:

For an Orlicz function φ and a decreasing weight w, two intrinsic exact descriptions are presented for the norm in the Köthe dual of the Orlicz-Lorentz function space Λ φ , w or the sequence space λ φ , w , equipped with either the Luxemburg or Amemiya norms. The first description is via the modular i n f φ ( f * / | g | ) | g | : g w , where f* is the decreasing rearrangement of f, ≺ denotes submajorization, and φ⁎ is the complementary function to φ. The second description is in terms of the modular I φ ( ( f * ) / w ) w ,where (f*)⁰ is Halperin’s level...

An inequality in Orlicz function spaces with Orlicz norm

Jin Cai Wang (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We use Simonenko quantitative indices of an 𝒩 -function Φ to estimate two parameters q Φ and Q Φ in Orlicz function spaces L Φ [ 0 , ) with Orlicz norm, and get the following inequality: B Φ B Φ - 1 q Φ Q Φ A Φ A φ - 1 , where A Φ and B Φ are Simonenko indices. A similar inequality is obtained in L Φ [ 0 , 1 ] with Orlicz norm.

Nonlinear unilateral problems in Orlicz spaces

L. Aharouch, E. Azroul, M. Rhoudaf (2006)

Applicationes Mathematicae

Similarity:

We prove the existence of solutions of the unilateral problem for equations of the type Au - divϕ(u) = μ in Orlicz spaces, where A is a Leray-Lions operator defined on ( A ) W ¹ L M ( Ω ) , μ L ¹ ( Ω ) + W - 1 E M ̅ ( Ω ) and ϕ C ( , N ) .

Decomposable sets and Musielak-Orlicz spaces of multifunctions

Andrzej Kasperski (2005)

Banach Center Publications

Similarity:

We introduce the Musielak-Orlicz space of multifunctions X m , φ and the set S F φ of φ-integrable selections of F. We show that some decomposable sets in Musielak-Orlicz space belong to X m , φ . We generalize Theorem 3.1 from [6]. Also, we get some theorems on the space X m , φ and the set S F φ .

Calderón couples of rearrangement invariant spaces

N. Kalton (1993)

Studia Mathematica

Similarity:

We examine conditions under which a pair of rearrangement invariant function spaces on [0,1] or [0,∞) form a Calderón couple. A very general criterion is developed to determine whether such a pair is a Calderón couple, with numerous applications. We give, for example, a complete classification of those spaces X which form a Calderón couple with L . We specialize our results to Orlicz spaces and are able to give necessary and sufficient conditions on an Orlicz function F so that the pair...

Compactness of composition operators acting on weighted Bergman-Orlicz spaces

Ajay K. Sharma, S. Ueki (2012)

Annales Polonici Mathematici

Similarity:

We characterize compact composition operators acting on weighted Bergman-Orlicz spaces α ψ = f H ( ) : ψ ( | f ( z ) | ) d A α ( z ) < , where α > -1 and ψ is a strictly increasing, subadditive convex function defined on [0,∞) and satisfying ψ(0) = 0, the growth condition l i m t ψ ( t ) / t = and the Δ₂-condition. In fact, we prove that C φ is compact on α ψ if and only if it is compact on the weighted Bergman space ² α .