Displaying similar documents to “Waring's problem for sixteen biquadrates. Numerical results”

The binary Goldbach conjecture with primes in arithmetic progressions with large modulus

Claus Bauer, Yonghui Wang (2013)

Acta Arithmetica

Similarity:

It is proved that for almost all prime numbers k N 1 / 4 - ϵ , any fixed integer b₂, (b₂,k) = 1, and almost all integers b₁, 1 ≤ b₁ ≤ k, (b₁,k) = 1, almost all integers n satisfying n ≡ b₁ + b₂ (mod k) can be written as the sum of two primes p₁ and p₂ satisfying p i b i ( m o d k ) , i = 1,2. For the proof of this result, new estimates for exponential sums over primes in arithmetic progressions are derived.

Second moments of Dirichlet L -functions weighted by Kloosterman sums

Tingting Wang (2012)

Czechoslovak Mathematical Journal

Similarity:

For the general modulo q 3 and a general multiplicative character χ modulo q , the upper bound estimate of | S ( m , n , 1 , χ , q ) | is a very complex and difficult problem. In most cases, the Weil type bound for | S ( m , n , 1 , χ , q ) | is valid, but there are some counterexamples. Although the value distribution of | S ( m , n , 1 , χ , q ) | is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for k -th Kloosterman sums and analytic method to study the asymptotic...

On sum-sets and product-sets of complex numbers

József Solymosi (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We give a simple argument that for any finite set of complex numbers A , the size of the the sum-set, A + A , or the product-set, A · A , is always large.

On a kind of generalized Lehmer problem

Rong Ma, Yulong Zhang (2012)

Czechoslovak Mathematical Journal

Similarity:

For 1 c p - 1 , let E 1 , E 2 , , E m be fixed numbers of the set { 0 , 1 } , and let a 1 , a 2 , , a m ( 1 a i p , i = 1 , 2 , , m ) be of opposite parity with E 1 , E 2 , , E m respectively such that a 1 a 2 a m c ( mod p ) . Let N ( c , m , p ) = 1 2 m - 1 a 1 = 1 p - 1 a 2 = 1 p - 1 a m = 1 p - 1 a 1 a 2 a m c ( mod p ) ( 1 - ( - 1 ) a 1 + E 1 ) ( 1 - ( - 1 ) a 2 + E 2 ) ( 1 - ( - 1 ) a m + E m ) . We are interested in the mean value of the sums c = 1 p - 1 E 2 ( c , m , p ) , where E ( c , m , p ) = N ( c , m , p ) - ( ( p - 1 ) m - 1 ) / ( 2 m - 1 ) for the odd prime p and any integers m 2 . When m = 2 , c = 1 , it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.

Multiplicative functions and k -automatic sequences

Soroosh Yazdani (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

A sequence is called k -automatic if the n ’th term in the sequence can be generated by a finite state machine, reading n in base k as input. We show that for many multiplicative functions, the sequence ( f ( n ) mod v ) n 1 is not k -automatic. Among these multiplicative functions are γ m ( n ) , σ m ( n ) , μ ( n ) et φ ( n ) .