The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The natural operators lifting vector fields to generalized higher order tangent bundles”

The natural operators lifting horizontal 1-forms to some vector bundle functors on fibered manifolds

J. Kurek, W. M. Mikulski (2003)

Colloquium Mathematicae

Similarity:

Let F:ℱ ℳ → ℬ be a vector bundle functor. First we classify all natural operators T p r o j | m , n T ( 0 , 0 ) ( F | m , n ) * transforming projectable vector fields on Y to functions on the dual bundle (FY)* for any m , n -object Y. Next, under some assumption on F we study natural operators T * h o r | m , n T * ( F | m , n ) * lifting horizontal 1-forms on Y to 1-forms on (FY)* for any Y as above. As an application we classify natural operators T * h o r | m , n T * ( F | m , n ) * for some vector bundle functors F on fibered manifolds.

Non-existence of some natural operators on connections

W. M. Mikulski (2003)

Annales Polonici Mathematici

Similarity:

Let n,r,k be natural numbers such that n ≥ k+1. Non-existence of natural operators C r Q ( r e g T k r K k r ) and C r Q ( r e g T k r * K k r * ) over n-manifolds is proved. Some generalizations are obtained.

Linear liftings of affinors to Weil bundles

Jacek Dębecki (2003)

Colloquium Mathematicae

Similarity:

We give a classification of all linear natural operators transforming affinors on each n-dimensional manifold M into affinors on T A M , where T A is the product preserving bundle functor given by a Weil algebra A, under the condition that n ≥ 2.

The natural operators lifting 1-forms to some vector bundle functors

J. Kurek, W. M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let F:ℳ f→ ℬ be a vector bundle functor. First we classify all natural operators T | f T ( 0 , 0 ) ( F | f ) * transforming vector fields to functions on the dual bundle functor ( F | f ) * . Next, we study the natural operators T * | f T * ( F | f ) * lifting 1-forms to ( F | f ) * . As an application we classify the natural operators T * | f T * ( F | f ) * for some well known vector bundle functors F.

Lifting vector fields to the rth order frame bundle

J. Kurek, W. M. Mikulski (2008)

Colloquium Mathematicae

Similarity:

We describe all natural operators lifting nowhere vanishing vector fields X on m-dimensional manifolds M to vector fields (X) on the rth order frame bundle L r M = i n v J r ( m , M ) over M. Next, we describe all natural operators lifting vector fields X on m-manifolds M to vector fields on L r M . In both cases we deduce that the spaces of all operators in question form free ( m ( C r m + r - 1 ) + 1 ) -dimensional modules over algebras of all smooth maps J r - 1 T ̃ m and J r - 1 T m respectively, where C k = n ! / ( n - k ) ! k ! . We explicitly construct bases of these modules. In particular,...

The jet prolongations of 2 -fibred manifolds and the flow operator

Włodzimierz M. Mikulski (2008)

Archivum Mathematicum

Similarity:

Let r , s , m , n , q be natural numbers such that s r . We prove that any 2 - 𝕄 m , n , q -natural operator A : T 2-proj T J ( s , r ) transforming 2 -projectable vector fields V on ( m , n , q ) -dimensional 2 -fibred manifolds Y X M into vector fields A ( V ) on the ( s , r ) -jet prolongation bundle J ( s , r ) Y is a constant multiple of the flow operator 𝒥 ( s , r ) .

On lifting of connections to Weil bundles

Jan Kurek, Włodzimierz M. Mikulski (2012)

Annales Polonici Mathematici

Similarity:

We prove that the problem of finding all f m -natural operators B : Q Q T A lifting classical linear connections ∇ on m-manifolds M to classical linear connections B M ( ) on the Weil bundle T A M corresponding to a p-dimensional (over ℝ) Weil algebra A is equivalent to the one of finding all f m -natural operators C : Q ( T ¹ p - 1 , T * T * T ) transforming classical linear connections ∇ on m-manifolds M into base-preserving fibred maps C M ( ) : T ¹ p - 1 M = M p - 1 T M T * M T * M T M .

Liftings of 1-forms to ( J r T * ) *

Włodzimierz M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let J r T * M be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let ( J r T * M ) * be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on ( J r T * M ) * is given.

Non-existence of some canonical constructions on connections

Włodzimierz M. Mikulski (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a vector bundle functor H : f 𝒱 with the point property we prove that H is product preserving if and only if for any m and n there is an m , n -natural operator D transforming connections Γ on ( m , n ) -dimensional fibered manifolds p : Y M into connections D ( Γ ) on H p : H Y H M . For a bundle functor E : m , n with some weak conditions we prove non-existence of m , n -natural operators D transforming connections Γ on ( m , n ) -dimensional fibered manifolds Y M into connections D ( Γ ) on E Y M .