Displaying similar documents to “Liftings of vector fields to 1 -forms on the r -jet prolongation of the cotangent bundle”

Natural affinors on ( J r , s , q ( . , 1 , 1 ) 0 ) *

Włodzimierz M. Mikulski (2001)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let r , s , q , m , n be such that s r q . Let Y be a fibered manifold with m -dimensional basis and n -dimensional fibers. All natural affinors on ( J r , s , q ( Y , 1 , 1 ) 0 ) * are classified. It is deduced that there is no natural generalized connection on ( J r , s , q ( Y , 1 , 1 ) 0 ) * . Similar problems with ( J r , s ( Y , ) 0 ) * instead of ( J r , s , q ( Y , 1 , 1 ) 0 ) * are solved.

Natural T -functions on the cotangent bundle of a Weil bundle

Jiří M. Tomáš (2004)

Czechoslovak Mathematical Journal

Similarity:

A natural T -function on a natural bundle F is a natural operator transforming vector fields on a manifold M into functions on F M . For any Weil algebra A satisfying dim M w i d t h ( A ) + 1 we determine all natural T -functions on T * T A M , the cotangent bundle to a Weil bundle T A M .

Contact elements on fibered manifolds

Ivan Kolář, Włodzimierz M. Mikulski (2003)

Czechoslovak Mathematical Journal

Similarity:

For every product preserving bundle functor T μ on fibered manifolds, we describe the underlying functor of any order ( r , s , q ) , s r q . We define the bundle K k , l r , s , q Y of ( k , l ) -dimensional contact elements of the order ( r , s , q ) on a fibered manifold Y and we characterize its elements geometrically. Then we study the bundle of general contact elements of type μ . We also determine all natural transformations of K k , l r , s , q Y into itself and of T ( K k , l r , s , q Y ) into itself and we find all natural operators lifting projectable vector fields and horizontal...