The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Forcing with ideals generated by closed sets”

On nonmeasurable images

Robert Rałowski, Szymon Żeberski (2010)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , 𝕀 ) be a Polish ideal space and let T be any set. We show that under some conditions on a relation R T 2 × X it is possible to find a set A T such that R ( A 2 ) is completely 𝕀 -nonmeasurable, i.e, it is 𝕀 -nonmeasurable in every positive Borel set. We also obtain such a set A T simultaneously for continuum many relations ( R α ) α < 2 ω . Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.

On π -caliber and an application of Prikry’s partial order

Andrzej Szymański (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study the concept of π -caliber as an alternative to the well known concept of caliber. π -caliber and caliber values coincide for regular cardinals greater than or equal to the Souslin number of a space. Unlike caliber, π -caliber may take on values below the Souslin number of a space. Under Martin’s axiom, 2 ω is a π -caliber of * . Prikry’s poset is used to settle a problem by Fedeli regarding possible values of very weak caliber.

Perfect sets and collapsing continuum

Miroslav Repický (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Under Martin’s axiom, collapsing of the continuum by Sacks forcing 𝕊 is characterized by the additivity of Marczewski’s ideal (see [4]). We show that the same characterization holds true if 𝔡 = 𝔠 proving that under this hypothesis there are no small uncountable maximal antichains in 𝕊 . We also construct a partition of ω 2 into 𝔠 perfect sets which is a maximal antichain in 𝕊 and show that s 0 -sets are exactly (subsets of) selectors of maximal antichains of perfect sets.

More results in polychromatic Ramsey theory

Uri Abraham, James Cummings (2012)

Open Mathematics

Similarity:

We study polychromatic Ramsey theory with a focus on colourings of [ω 2]2. We show that in the absence of GCH there is a wide range of possibilities. In particular each of the following is consistent relative to the consistency of ZFC: (1) 2ω = ω 2 and ω 2 p o l y ( α ) 0 - b d d 2 for every α <ω 2; (2) 2ω = ω 2 and ω 2 p o l y ( ω 1 ) 2 - b d d 2 .