Displaying similar documents to “A nonexistence result for the Kurzweil integral”

Cauchy's residue theorem for a class of real valued functions

Branko Sarić (2010)

Czechoslovak Mathematical Journal

Similarity:

Let [ a , b ] be an interval in and let F be a real valued function defined at the endpoints of [ a , b ] and with a certain number of discontinuities within [ a , b ] . Assuming F to be differentiable on a set [ a , b ] E to the derivative f , where E is a subset of [ a , b ] at whose points F can take values ± or not be defined at all, we adopt the convention that F and f are equal to 0 at all points of E and show that 𝒦ℋ -vt a b f = F ( b ) - F ( a ) , where 𝒦ℋ -vt denotes the total value of the integral. The paper ends with a few examples that illustrate the...

The L r Henstock-Kurzweil integral

Paul M. Musial, Yoram Sagher (2004)

Studia Mathematica

Similarity:

We present a method of integration along the lines of the Henstock-Kurzweil integral. All L r -derivatives are integrable in this method.

Role of the Harnack extension principle in the Kurzweil-Stieltjes integral

Umi Mahnuna Hanung (2024)

Mathematica Bohemica

Similarity:

In the theories of integration and of ordinary differential and integral equations, convergence theorems provide one of the most widely used tools. Since the values of the Kurzweil-Stieltjes integrals over various kinds of bounded intervals having the same infimum and supremum need not coincide, the Harnack extension principle in the Kurzweil-Henstock integral, which is a key step to supply convergence theorems, cannot be easily extended to the Kurzweil-type Stieltjes integrals with...

Continuity in the Alexiewicz norm

Erik Talvila (2006)

Mathematica Bohemica

Similarity:

If f is a Henstock-Kurzweil integrable function on the real line, the Alexiewicz norm of f is f = sup I | I f | where the supremum is taken over all intervals I . Define the translation τ x by τ x f ( y ) = f ( y - x ) . Then τ x f - f tends to 0 as x tends to 0 , i.e., f is continuous in the Alexiewicz norm. For particular functions, τ x f - f can tend to 0 arbitrarily slowly. In general, τ x f - f osc f | x | as x 0 , where osc f is the oscillation of f . It is shown that if F is a primitive of f then τ x F - F f | x | . An example shows that the function y τ x F ( y ) - F ( y ) need not be in L 1 . However, if...