The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “No 17 -torsion on elliptic curves over cubic number fields”

On Elkies subgroups of -torsion points in elliptic curves defined over a finite field

Reynald Lercier, Thomas Sirvent (2008)

Journal de Théorie des Nombres de Bordeaux

Similarity:

As a subproduct of the Schoof-Elkies-Atkin algorithm to count points on elliptic curves defined over finite fields of characteristic p , there exists an algorithm that computes, for an Elkies prime, -torsion points in an extension of degree - 1 at cost O ˜ ( max ( , log q ) 2 ) bit operations in the favorable case where p / 2 . We combine in this work a fast algorithm for computing isogenies due to Bostan, Morain, Salvy and Schost with the p -adic approach followed by Joux and Lercier to get an algorithm...