The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “ K 2 et conjecture de Greenberg dans les p -extensions multiples”

Sur la p -torsion de certains modules galoisiens

Thong Nguyen-Quang-Do (1986)

Annales de l'institut Fourier

Similarity:

Étant donné un corps de nombres K et un nombre premier p , soit 𝒯 K le sous-module de Z p -torsion du groupe de Galois de la p -extension abélienne p -ramifiée maximale de K . On se propose d’étudier la structure de module galoisien de 𝒯 K . Si K vérifie la conjecture de Leopoldt, 𝒯 K contient un sous-module formé des racines p -primaires de l’unité semi-locales quotientées par les racines p -primaires de l’unité globales, et le quotient de 𝒯 K par ce sous-module peut s’interpréter de deux façons : soit...

Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa

Thong Nguyen Quang Do (2005)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Pour un nombre premier impair p et une extension abélienne K / k de corps de nombres totalement réels, nous utilisons la Conjecture Principale Équivariante démontrée par Ritter et Weiss (modulo la nullité de l’invariant μ p ) pour calculer l’idéal de Fitting d’un certain module d’Iwasawa sur l’algèbre complète p [ [ G ] ] , G = G a l ( K / k ) et K est la p -extension cyclotomique de K . Par descente, nous en déduisons la p -partie de la version cohomologique de la conjecture de Coates-Sinnott, ainsi qu’une forme faible...

Une formule de Riemann-Hurwitz pour le groupe de Selmer d'une courbe elliptique

Alexis Michel (1993)

Annales de l'institut Fourier

Similarity:

Soit E une courbe elliptique avec multiplication complexe, définie sur un corps de nombres F . Soit p un nombre premier. En ajoutant certains points de p -torsion de E à F , on construit une p -extension F de F . On associe à F un groupe de Selmer. Pour une p -extension galoisienne de F , Wingberg a montré, sous les conjectures arithmétiques usuelles, un analogue de la formule de Riemann-Hurwitz pour le corang du groupe de Selmer en haut de la tour. Nous donnons une nouvelle preuve...

Unités cyclotomiques, unités semi-locales et -extensions. II

Roland Gillard (1979)

Annales de l'institut Fourier

Similarity:

Soient K un corps abélien réel, un nombre premier, premier à [ K : Q ] et Y n le quotient du groupe des unités semi-locales de K ( 1 n ) par celui des unités cyclotomiques : on donne la structure galoisienne de la limite projective des Y n , généralisant un théorème d’Iwasawa, et on applique ceci à la comparaison de conjecture classique sur la limite projective des groupes de classes.