Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa

Thong Nguyen Quang Do[1]

  • [1] UMR 6623 CNRS Université de Franche-Comté 16, Route de Gray 25030 Besançon Cedex - France

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 2, page 643-668
  • ISSN: 1246-7405

Abstract

top
For an odd prime number p and an abelian extension of totally real number fields K / k , we use the Equivariant Main Conjecture proved by Ritter and Weiss (modulo the vanishing of the μ p invariant) to compute the Fitting ideal of a certain Iwasawa module over the complete group algebra p [ [ G ] ] , where G = G a l ( K / k ) , K being the cyclotomic p -extension of K . By descent, this gives the p -part of (a cohomological version of) the Coates-Sinnott conjecture, as well as a weak form of the p -part of the Brumer conjecture.

How to cite

top

Nguyen Quang Do, Thong. "Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa." Journal de Théorie des Nombres de Bordeaux 17.2 (2005): 643-668. <http://eudml.org/doc/249463>.

@article{NguyenQuangDo2005,
abstract = {Pour un nombre premier impair $p$ et une extension abélienne $K/k$ de corps de nombres totalement réels, nous utilisons la Conjecture Principale Équivariante démontrée par Ritter et Weiss (modulo la nullité de l’invariant $\mu _p$) pour calculer l’idéal de Fitting d’un certain module d’Iwasawa sur l’algèbre complète $\{\mathbb\{Z\}\}_\{p\}[[G_\{\infty \}]],$ où $G_\{\infty \} = \ Gal\ (K_\{\infty \}/k)$ et $K_\{\infty \}$ est la $\{\mathbb\{Z\}\}_\{p\}$-extension cyclotomique de $K$. Par descente, nous en déduisons la $p$-partie de la version cohomologique de la conjecture de Coates-Sinnott, ainsi qu’une forme faible de la $p$-partie de la conjecture de Brumer},
affiliation = {UMR 6623 CNRS Université de Franche-Comté 16, Route de Gray 25030 Besançon Cedex - France},
author = {Nguyen Quang Do, Thong},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Fitting ideals; Equivariant Main Conjecture; Main conjecture; cohomology},
language = {fre},
number = {2},
pages = {643-668},
publisher = {Université Bordeaux 1},
title = {Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa},
url = {http://eudml.org/doc/249463},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Nguyen Quang Do, Thong
TI - Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 2
SP - 643
EP - 668
AB - Pour un nombre premier impair $p$ et une extension abélienne $K/k$ de corps de nombres totalement réels, nous utilisons la Conjecture Principale Équivariante démontrée par Ritter et Weiss (modulo la nullité de l’invariant $\mu _p$) pour calculer l’idéal de Fitting d’un certain module d’Iwasawa sur l’algèbre complète ${\mathbb{Z}}_{p}[[G_{\infty }]],$ où $G_{\infty } = \ Gal\ (K_{\infty }/k)$ et $K_{\infty }$ est la ${\mathbb{Z}}_{p}$-extension cyclotomique de $K$. Par descente, nous en déduisons la $p$-partie de la version cohomologique de la conjecture de Coates-Sinnott, ainsi qu’une forme faible de la $p$-partie de la conjecture de Brumer
LA - fre
KW - Fitting ideals; Equivariant Main Conjecture; Main conjecture; cohomology
UR - http://eudml.org/doc/249463
ER -

References

top
  1. D. Barsky, Sur la nullité du μ -invariant d’Iwasawa des corps totalement réels, prépublication (2005). 
  2. D. Burns & C. Greither, On the Equivariant Tamagawa Number Conjecture for Tate motives. Invent. Math. 153 (2003), no. 2, 303–359. Zbl1142.11076MR1992015
  3. D. Burns & C. Greither, Equivariant Weierstrass Preparation and values of L -functions at negative integers. Doc. Math. (2003), Extra Vol., 157–185. Zbl1142.11371MR2046598
  4. D. Benois & T. Nguyen Quang Do. Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs ( m ) sur un corps abélien. Ann. Sci. ENS 35 (2002), 641–672. Zbl1125.11351MR1951439
  5. J. Coates & W. Sinnott, An analogue of Stickelberger’s theorem for the higher K -groups. Invent. Math. 24 (1974), 149–161. Zbl0282.12006
  6. P. Deligne & K. Ribet, Values of abelian L -functions at negative integers. Invent. Math 59 (1980), 227–286. Zbl0434.12009MR579702
  7. C. Greither, The structure of some minus class groups, and Chinburg’s third conjecture for abelian fields. Math. Zeit. 229 (1998), 107–136. Zbl0919.11072
  8. C. Greither, Some cases of Brumer’s conjecture. Math. Zeit. 233 (2000), 515–534. Zbl0965.11047
  9. C. Greither, Computing Fitting ideals of Iwasawa modules. Math. Z. 246 (2004), no. 4, 733–767. Zbl1067.11067MR2045837
  10. A. Huber & G. Kings, Bloch-Kato Conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters. Duke Math. J. 119 (2003), no. 3, 393–464. Zbl1044.11095MR2002643
  11. A. Huber & G. Kings, Equivariant Bloch-Kato Conjecture and non abelian Iwasawa Main Conjecture. ICM 2002, vol. II, 149–162. Zbl1020.11067MR1957029
  12. Y. Ihara, On Galois representations arising from towers of coverings of 1 { 0 , 1 , } . Invent. Math. 86 (1986), 427–459. Zbl0585.14020MR860676
  13. K. Iwasawa, On -extensions of algebraic number fields. Annals of Math. 98 (1973), 246–326. Zbl0285.12008MR349627
  14. U. Jannsen, Iwasawa modules up to isomorphism. Adv. Studies in Pure Math. 17 (1989), 171–207. Zbl0732.11061MR1097615
  15. K. Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil L -functions via B dR . I. Arithmetic algebraic geometry (Trento, 1991). 50–163, Lecture Notes in Math., 1553, Springer, Berlin, 1993. Zbl0815.11051MR1338860
  16. M. Kurihara, Iwasawa theory and Fitting ideals. J. Reine Angew. Math. 561 (2003), 39–86. Zbl1056.11063MR1998607
  17. M. Kurihara, On the structure of ideal class groups of C M fields. Doc. Math. (2003), Extra Vol., 539–563. Zbl1135.11339MR2046607
  18. M. Kolster, T. Nguyen Quang Do & V. Fleckinger, Twisted S -units, p -adic class number formulas, and the Lichtenbaum conjectures. Duke Math. J. 84 (1996), no. 3, 679–717. Zbl0863.19003MR1408541
  19. M. Le Floc’h, On Fitting ideals of certain étale K -groups. K-Theory 27 (2002), 281–292. Zbl1083.11073
  20. B. Mazur & A. Wiles, Class fields of abelian extensions of . Invent. Math. 76 (1984), 179–330. Zbl0545.12005MR742853
  21. T. Nguyen Quang Do, Formations de classes et modules d’Iwasawa. Dans “Number Theory Noordwijkerhout”, Springer LNM 1068 (1984), 167–185. Zbl0543.12007
  22. T. Nguyen Quang Do, Sur la p -torsion de certains modules galoisiens. Ann. Inst. Fourier 36 (1986), no. 2, 27–46. Zbl0576.12010MR850741
  23. T. Nguyen Quang Do, Analogues supérieurs du noyau sauvage. J. Théorie des Nombres Bordeaux 4 (1992), 263–271. Zbl0783.11042MR1208865
  24. T. Nguyen Quang Do, Quelques applications de la Conjecture Principale Equivariante, lettre à M. Kurihara (15/02/02). Zbl0511.12009
  25. J. Neukirch, A. Schmidt & K. Wingberg, Cohomology of Number Fields. Grundlehren 323, Springer, 2000. Zbl0948.11001MR1737196
  26. K. Ribet, Report on p -adic L -functions over totally real fields. Astérisque 61 (1979), 177–192. Zbl0408.12016MR556672
  27. J. Ritter & A. Weiss, The Lifted Root Number Conjecture and Iwasawa theory. Memoirs AMS 157/748 (2002). Zbl1002.11082MR1894887
  28. J. Ritter & A. Weiss, Towards equivariant Iwasawa theory. Manuscripta Math. 109 (2002), 131–146. Zbl1014.11066MR1935024
  29. J. Rognes & C.A. Weibel, Two-primary algebraic K -theory of rings of integers in number fields. J. AMS (1) 13 (2000), 1–54. Zbl0934.19001MR1697095
  30. P. Schneider, Über gewisse Galoiscohomologiegruppen. Math. Zeit 168 (1979), 181–205. Zbl0421.12024MR544704
  31. J.-P. Serre, Sur le résidu de la fonction zêta p -adique d’un corps de nombres. CRAS Paris 287, A (1978), 183–188. Zbl0393.12026
  32. V. Snaith, “Algebraic K -groups as Galois modules”. Birkhauser, Progress in Math. 206 (2002). Zbl1011.11074
  33. V. Snaith, Relative K 0 , Fitting ideals and the Stickelberger phenomena, preprint (2002). Zbl1108.19001
  34. J. Tate, “Les conjectures de Stark sur les fonctions L d’Artin en s = 0 ”. Birkhauser, Progress in Math. 47 (1984). Zbl0545.12009
  35. A. Wiles, The Iwasawa conjecture for totally real fields. Annals of Math. 141 (1990), 493–540. Zbl0719.11071MR1053488
  36. A. Wiles, On a conjecture of Brumer. Annals of Math. 131 (1990), 555–565. Zbl0719.11082MR1053490

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.