Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa
- [1] UMR 6623 CNRS Université de Franche-Comté 16, Route de Gray 25030 Besançon Cedex - France
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 2, page 643-668
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- D. Barsky, Sur la nullité du -invariant d’Iwasawa des corps totalement réels, prépublication (2005).
- D. Burns & C. Greither, On the Equivariant Tamagawa Number Conjecture for Tate motives. Invent. Math. 153 (2003), no. 2, 303–359. Zbl1142.11076MR1992015
- D. Burns & C. Greither, Equivariant Weierstrass Preparation and values of -functions at negative integers. Doc. Math. (2003), Extra Vol., 157–185. Zbl1142.11371MR2046598
- D. Benois & T. Nguyen Quang Do. Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs sur un corps abélien. Ann. Sci. ENS 35 (2002), 641–672. Zbl1125.11351MR1951439
- J. Coates & W. Sinnott, An analogue of Stickelberger’s theorem for the higher -groups. Invent. Math. 24 (1974), 149–161. Zbl0282.12006
- P. Deligne & K. Ribet, Values of abelian -functions at negative integers. Invent. Math 59 (1980), 227–286. Zbl0434.12009MR579702
- C. Greither, The structure of some minus class groups, and Chinburg’s third conjecture for abelian fields. Math. Zeit. 229 (1998), 107–136. Zbl0919.11072
- C. Greither, Some cases of Brumer’s conjecture. Math. Zeit. 233 (2000), 515–534. Zbl0965.11047
- C. Greither, Computing Fitting ideals of Iwasawa modules. Math. Z. 246 (2004), no. 4, 733–767. Zbl1067.11067MR2045837
- A. Huber & G. Kings, Bloch-Kato Conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters. Duke Math. J. 119 (2003), no. 3, 393–464. Zbl1044.11095MR2002643
- A. Huber & G. Kings, Equivariant Bloch-Kato Conjecture and non abelian Iwasawa Main Conjecture. ICM 2002, vol. II, 149–162. Zbl1020.11067MR1957029
- Y. Ihara, On Galois representations arising from towers of coverings of . Invent. Math. 86 (1986), 427–459. Zbl0585.14020MR860676
- K. Iwasawa, On -extensions of algebraic number fields. Annals of Math. 98 (1973), 246–326. Zbl0285.12008MR349627
- U. Jannsen, Iwasawa modules up to isomorphism. Adv. Studies in Pure Math. 17 (1989), 171–207. Zbl0732.11061MR1097615
- K. Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil -functions via . I. Arithmetic algebraic geometry (Trento, 1991). 50–163, Lecture Notes in Math., 1553, Springer, Berlin, 1993. Zbl0815.11051MR1338860
- M. Kurihara, Iwasawa theory and Fitting ideals. J. Reine Angew. Math. 561 (2003), 39–86. Zbl1056.11063MR1998607
- M. Kurihara, On the structure of ideal class groups of fields. Doc. Math. (2003), Extra Vol., 539–563. Zbl1135.11339MR2046607
- M. Kolster, T. Nguyen Quang Do & V. Fleckinger, Twisted -units, -adic class number formulas, and the Lichtenbaum conjectures. Duke Math. J. 84 (1996), no. 3, 679–717. Zbl0863.19003MR1408541
- M. Le Floc’h, On Fitting ideals of certain étale -groups. K-Theory 27 (2002), 281–292. Zbl1083.11073
- B. Mazur & A. Wiles, Class fields of abelian extensions of . Invent. Math. 76 (1984), 179–330. Zbl0545.12005MR742853
- T. Nguyen Quang Do, Formations de classes et modules d’Iwasawa. Dans “Number Theory Noordwijkerhout”, Springer LNM 1068 (1984), 167–185. Zbl0543.12007
- T. Nguyen Quang Do, Sur la -torsion de certains modules galoisiens. Ann. Inst. Fourier 36 (1986), no. 2, 27–46. Zbl0576.12010MR850741
- T. Nguyen Quang Do, Analogues supérieurs du noyau sauvage. J. Théorie des Nombres Bordeaux 4 (1992), 263–271. Zbl0783.11042MR1208865
- T. Nguyen Quang Do, Quelques applications de la Conjecture Principale Equivariante, lettre à M. Kurihara (15/02/02). Zbl0511.12009
- J. Neukirch, A. Schmidt & K. Wingberg, Cohomology of Number Fields. Grundlehren 323, Springer, 2000. Zbl0948.11001MR1737196
- K. Ribet, Report on -adic -functions over totally real fields. Astérisque 61 (1979), 177–192. Zbl0408.12016MR556672
- J. Ritter & A. Weiss, The Lifted Root Number Conjecture and Iwasawa theory. Memoirs AMS 157/748 (2002). Zbl1002.11082MR1894887
- J. Ritter & A. Weiss, Towards equivariant Iwasawa theory. Manuscripta Math. 109 (2002), 131–146. Zbl1014.11066MR1935024
- J. Rognes & C.A. Weibel, Two-primary algebraic -theory of rings of integers in number fields. J. AMS (1) 13 (2000), 1–54. Zbl0934.19001MR1697095
- P. Schneider, Über gewisse Galoiscohomologiegruppen. Math. Zeit 168 (1979), 181–205. Zbl0421.12024MR544704
- J.-P. Serre, Sur le résidu de la fonction zêta -adique d’un corps de nombres. CRAS Paris 287, A (1978), 183–188. Zbl0393.12026
- V. Snaith, “Algebraic -groups as Galois modules”. Birkhauser, Progress in Math. 206 (2002). Zbl1011.11074
- V. Snaith, Relative Fitting ideals and the Stickelberger phenomena, preprint (2002). Zbl1108.19001
- J. Tate, “Les conjectures de Stark sur les fonctions d’Artin en ”. Birkhauser, Progress in Math. 47 (1984). Zbl0545.12009
- A. Wiles, The Iwasawa conjecture for totally real fields. Annals of Math. 141 (1990), 493–540. Zbl0719.11071MR1053488
- A. Wiles, On a conjecture of Brumer. Annals of Math. 131 (1990), 555–565. Zbl0719.11082MR1053490