Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa
- [1] UMR 6623 CNRS Université de Franche-Comté 16, Route de Gray 25030 Besançon Cedex - France
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 2, page 643-668
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topNguyen Quang Do, Thong. "Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa." Journal de Théorie des Nombres de Bordeaux 17.2 (2005): 643-668. <http://eudml.org/doc/249463>.
@article{NguyenQuangDo2005,
abstract = {Pour un nombre premier impair $p$ et une extension abélienne $K/k$ de corps de nombres totalement réels, nous utilisons la Conjecture Principale Équivariante démontrée par Ritter et Weiss (modulo la nullité de l’invariant $\mu _p$) pour calculer l’idéal de Fitting d’un certain module d’Iwasawa sur l’algèbre complète $\{\mathbb\{Z\}\}_\{p\}[[G_\{\infty \}]],$ où $G_\{\infty \} = \ Gal\ (K_\{\infty \}/k)$ et $K_\{\infty \}$ est la $\{\mathbb\{Z\}\}_\{p\}$-extension cyclotomique de $K$. Par descente, nous en déduisons la $p$-partie de la version cohomologique de la conjecture de Coates-Sinnott, ainsi qu’une forme faible de la $p$-partie de la conjecture de Brumer},
affiliation = {UMR 6623 CNRS Université de Franche-Comté 16, Route de Gray 25030 Besançon Cedex - France},
author = {Nguyen Quang Do, Thong},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Fitting ideals; Equivariant Main Conjecture; Main conjecture; cohomology},
language = {fre},
number = {2},
pages = {643-668},
publisher = {Université Bordeaux 1},
title = {Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa},
url = {http://eudml.org/doc/249463},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Nguyen Quang Do, Thong
TI - Conjecture principale équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 2
SP - 643
EP - 668
AB - Pour un nombre premier impair $p$ et une extension abélienne $K/k$ de corps de nombres totalement réels, nous utilisons la Conjecture Principale Équivariante démontrée par Ritter et Weiss (modulo la nullité de l’invariant $\mu _p$) pour calculer l’idéal de Fitting d’un certain module d’Iwasawa sur l’algèbre complète ${\mathbb{Z}}_{p}[[G_{\infty }]],$ où $G_{\infty } = \ Gal\ (K_{\infty }/k)$ et $K_{\infty }$ est la ${\mathbb{Z}}_{p}$-extension cyclotomique de $K$. Par descente, nous en déduisons la $p$-partie de la version cohomologique de la conjecture de Coates-Sinnott, ainsi qu’une forme faible de la $p$-partie de la conjecture de Brumer
LA - fre
KW - Fitting ideals; Equivariant Main Conjecture; Main conjecture; cohomology
UR - http://eudml.org/doc/249463
ER -
References
top- D. Barsky, Sur la nullité du -invariant d’Iwasawa des corps totalement réels, prépublication (2005).
- D. Burns & C. Greither, On the Equivariant Tamagawa Number Conjecture for Tate motives. Invent. Math. 153 (2003), no. 2, 303–359. Zbl1142.11076MR1992015
- D. Burns & C. Greither, Equivariant Weierstrass Preparation and values of -functions at negative integers. Doc. Math. (2003), Extra Vol., 157–185. Zbl1142.11371MR2046598
- D. Benois & T. Nguyen Quang Do. Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs sur un corps abélien. Ann. Sci. ENS 35 (2002), 641–672. Zbl1125.11351MR1951439
- J. Coates & W. Sinnott, An analogue of Stickelberger’s theorem for the higher -groups. Invent. Math. 24 (1974), 149–161. Zbl0282.12006
- P. Deligne & K. Ribet, Values of abelian -functions at negative integers. Invent. Math 59 (1980), 227–286. Zbl0434.12009MR579702
- C. Greither, The structure of some minus class groups, and Chinburg’s third conjecture for abelian fields. Math. Zeit. 229 (1998), 107–136. Zbl0919.11072
- C. Greither, Some cases of Brumer’s conjecture. Math. Zeit. 233 (2000), 515–534. Zbl0965.11047
- C. Greither, Computing Fitting ideals of Iwasawa modules. Math. Z. 246 (2004), no. 4, 733–767. Zbl1067.11067MR2045837
- A. Huber & G. Kings, Bloch-Kato Conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters. Duke Math. J. 119 (2003), no. 3, 393–464. Zbl1044.11095MR2002643
- A. Huber & G. Kings, Equivariant Bloch-Kato Conjecture and non abelian Iwasawa Main Conjecture. ICM 2002, vol. II, 149–162. Zbl1020.11067MR1957029
- Y. Ihara, On Galois representations arising from towers of coverings of . Invent. Math. 86 (1986), 427–459. Zbl0585.14020MR860676
- K. Iwasawa, On -extensions of algebraic number fields. Annals of Math. 98 (1973), 246–326. Zbl0285.12008MR349627
- U. Jannsen, Iwasawa modules up to isomorphism. Adv. Studies in Pure Math. 17 (1989), 171–207. Zbl0732.11061MR1097615
- K. Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil -functions via . I. Arithmetic algebraic geometry (Trento, 1991). 50–163, Lecture Notes in Math., 1553, Springer, Berlin, 1993. Zbl0815.11051MR1338860
- M. Kurihara, Iwasawa theory and Fitting ideals. J. Reine Angew. Math. 561 (2003), 39–86. Zbl1056.11063MR1998607
- M. Kurihara, On the structure of ideal class groups of fields. Doc. Math. (2003), Extra Vol., 539–563. Zbl1135.11339MR2046607
- M. Kolster, T. Nguyen Quang Do & V. Fleckinger, Twisted -units, -adic class number formulas, and the Lichtenbaum conjectures. Duke Math. J. 84 (1996), no. 3, 679–717. Zbl0863.19003MR1408541
- M. Le Floc’h, On Fitting ideals of certain étale -groups. K-Theory 27 (2002), 281–292. Zbl1083.11073
- B. Mazur & A. Wiles, Class fields of abelian extensions of . Invent. Math. 76 (1984), 179–330. Zbl0545.12005MR742853
- T. Nguyen Quang Do, Formations de classes et modules d’Iwasawa. Dans “Number Theory Noordwijkerhout”, Springer LNM 1068 (1984), 167–185. Zbl0543.12007
- T. Nguyen Quang Do, Sur la -torsion de certains modules galoisiens. Ann. Inst. Fourier 36 (1986), no. 2, 27–46. Zbl0576.12010MR850741
- T. Nguyen Quang Do, Analogues supérieurs du noyau sauvage. J. Théorie des Nombres Bordeaux 4 (1992), 263–271. Zbl0783.11042MR1208865
- T. Nguyen Quang Do, Quelques applications de la Conjecture Principale Equivariante, lettre à M. Kurihara (15/02/02). Zbl0511.12009
- J. Neukirch, A. Schmidt & K. Wingberg, Cohomology of Number Fields. Grundlehren 323, Springer, 2000. Zbl0948.11001MR1737196
- K. Ribet, Report on -adic -functions over totally real fields. Astérisque 61 (1979), 177–192. Zbl0408.12016MR556672
- J. Ritter & A. Weiss, The Lifted Root Number Conjecture and Iwasawa theory. Memoirs AMS 157/748 (2002). Zbl1002.11082MR1894887
- J. Ritter & A. Weiss, Towards equivariant Iwasawa theory. Manuscripta Math. 109 (2002), 131–146. Zbl1014.11066MR1935024
- J. Rognes & C.A. Weibel, Two-primary algebraic -theory of rings of integers in number fields. J. AMS (1) 13 (2000), 1–54. Zbl0934.19001MR1697095
- P. Schneider, Über gewisse Galoiscohomologiegruppen. Math. Zeit 168 (1979), 181–205. Zbl0421.12024MR544704
- J.-P. Serre, Sur le résidu de la fonction zêta -adique d’un corps de nombres. CRAS Paris 287, A (1978), 183–188. Zbl0393.12026
- V. Snaith, “Algebraic -groups as Galois modules”. Birkhauser, Progress in Math. 206 (2002). Zbl1011.11074
- V. Snaith, Relative Fitting ideals and the Stickelberger phenomena, preprint (2002). Zbl1108.19001
- J. Tate, “Les conjectures de Stark sur les fonctions d’Artin en ”. Birkhauser, Progress in Math. 47 (1984). Zbl0545.12009
- A. Wiles, The Iwasawa conjecture for totally real fields. Annals of Math. 141 (1990), 493–540. Zbl0719.11071MR1053488
- A. Wiles, On a conjecture of Brumer. Annals of Math. 131 (1990), 555–565. Zbl0719.11082MR1053490
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.