Displaying similar documents to “Biharmonic morphisms”

On generalized f -harmonic morphisms

A. Mohammed Cherif, Djaa Mustapha (2014)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we study the characterization of generalized f -harmonic morphisms between Riemannian manifolds. We prove that a map between Riemannian manifolds is an f -harmonic morphism if and only if it is a horizontally weakly conformal map satisfying some further conditions. We present new properties generalizing Fuglede-Ishihara characterization for harmonic morphisms ([Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), 107–144],...

Harmonic morphisms between riemannian manifolds

Bent Fuglede (1978)

Annales de l'institut Fourier

Similarity:

A harmonic morphism f : M N between Riemannian manifolds M and N is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim M dim N , since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where d f vanishes. Every non-constant harmonic morphism is shown to be...

On separately subharmonic functions (Lelong’s problem)

A. Sadullaev (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

The main result of the present paper is : every separately-subharmonic function u ( x , y ) , which is harmonic in y , can be represented locally as a sum two functions, u = u * + U , where U is subharmonic and u * is harmonic in y , subharmonic in x and harmonic in ( x , y ) outside of some nowhere dense set S .

Superharmonic extension and harmonic approximation

Stephen J. Gardiner (1994)

Annales de l'institut Fourier

Similarity:

Let Ω be an open set in n and E be a subset of Ω . We characterize those pairs ( Ω , E ) which permit the extension of superharmonic functions from E to Ω , or the approximation of functions on E by harmonic functions on Ω .