Displaying similar documents to “Special values of symmetric power L -functions and Hecke eigenvalues”

Sign changes of error terms related to arithmetical functions

Paulo J. Almeida (2007)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let H ( x ) = n x φ ( n ) n - 6 π 2 x . Motivated by a conjecture of Erdös, Lau developed a new method and proved that # { n T : H ( n ) H ( n + 1 ) < 0 } T . We consider arithmetical functions f ( n ) = d n b d d whose summation can be expressed as n x f ( n ) = α x + P ( log ( x ) ) + E ( x ) , where P ( x ) is a polynomial, E ( x ) = - n y ( x ) b n n ψ x n + o ( 1 ) and ψ ( x ) = x - x - 1 / 2 . We generalize Lau’s method and prove results about the number of sign changes for these error terms.

Explicit lower bounds for linear forms in two logarithms

Nicolas Gouillon (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We give an explicit lower bound for linear forms in two logarithms. For this we specialize the so-called Schneider method with multiplicity described in []. We substantially improve the numerical constants involved in existing statements for linear forms in two logarithms, obtained from Baker’s method or Schneider’s method with multiplicity. Our constant is around 5 . 10 4 instead of 10 8 .

A constant in pluripotential theory

Zbigniew Błocki (1992)

Annales Polonici Mathematici

Similarity:

We compute the constant sup ( 1 / d e g P ) ( m a x S l o g | P | - S l o g | P | d σ ) : P a polynomial in n , where S denotes the euclidean unit sphere in n and σ its unitary surface measure.

Complete solutions of a family of cubic Thue equations

Alain Togbé (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, we use Baker’s method, based on linear forms of logarithms, to solve a family of Thue equations associated with a family of number fields of degree 3. We obtain all solutions to the Thue equation Φ n ( x , y ) = x 3 + ( n 8 + 2 n 6 - 3 n 5 + 3 n 4 - 4 n 3 + 5 n 2 - 3 n + 3 ) x 2 y - ( n 3 - 2 ) n 2 x y 2 - y 3 = ± 1 , for n 0 .

Linearly invariant families of holomorphic functions in the unit polydisc

Janusz Godula, Victor Starkov (1996)

Banach Center Publications

Similarity:

In this paper we extend the definition of the linearly invariant family and the definition of the universal linearly invariant family to higher dimensional case. We characterize these classes and give some of their properties. We also give a relationship of these families with the Bloch space.