Displaying similar documents to “A note on the paper ``Smoothness and the property of Kelley''”

Continua with unique symmetric product

José G. Anaya, Enrique Castañeda-Alvarado, Alejandro Illanes (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a metric continuum. Let F n ( X ) denote the hyperspace of nonempty subsets of X with at most n elements. We say that the continuum X has unique hyperspace F n ( X ) provided that the following implication holds: if Y is a continuum and F n ( X ) is homeomorphic to F n ( Y ) , then X is homeomorphic to Y . In this paper we prove the following results: (1) if X is an indecomposable continuum such that each nondegenerate proper subcontinuum of X is an arc, then X has unique hyperspace F 2 ( X ) , and (2) let X be an arcwise...

Monotone retractions and depth of continua

Janusz Jerzy Charatonik, Panayotis Spyrou (1994)

Archivum Mathematicum

Similarity:

It is shown that for every two countable ordinals α and β with α > β there exist λ -dendroids X and Y whose depths are α and β respectively, and a monotone retraction from X onto Y . Moreover, the continua X and Y can be either both arclike or both fans.

Homeomorphisms of composants of Knaster continua

Sonja Štimac (2002)

Fundamenta Mathematicae

Similarity:

The Knaster continuum K p is defined as the inverse limit of the pth degree tent map. On every composant of the Knaster continuum we introduce an order and we consider some special points of the composant. These are used to describe the structure of the composants. We then prove that, for any integer p ≥ 2, all composants of K p having no endpoints are homeomorphic. This generalizes Bandt’s result which concerns the case p = 2.

Krasinkiewicz maps from compacta to polyhedra

Eiichi Matsuhashi (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We prove that the set of all Krasinkiewicz maps from a compact metric space to a polyhedron (or a 1-dimensional locally connected continuum, or an n-dimensional Menger manifold, n ≥ 1) is a dense G δ -subset of the space of all maps. We also investigate the existence of surjective Krasinkiewicz maps from continua to polyhedra.

Decompositions of the plane and the size of the continuum

Ramiro de la Vega (2009)

Fundamenta Mathematicae

Similarity:

We consider a triple ⟨E₀,E₁,E₂⟩ of equivalence relations on ℝ² and investigate the possibility of decomposing the plane into three sets ℝ² = S₀ ∪ S₁ ∪ S₂ in such a way that each S i intersects each E i -class in finitely many points. Many results in the literature, starting with a famous theorem of Sierpiński, show that for certain triples the existence of such a decomposition is equivalent to the continuum hypothesis. We give a characterization in ZFC of the triples for which the decomposition...