Displaying similar documents to “Inner products in covolume and mimetic methods”

A mimetic discretization method for linear elasticity

Lourenco Beirão Da Veiga (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

A Mimetic Discretization method for the linear elasticity problem in mixed weakly symmetric form is developed. The scheme is shown to converge linearly in the mesh size, independently of the incompressibility parameter , provided the discrete scalar product satisfies two given conditions. Finally, a family of algebraic scalar products which respect the above conditions is detailed.

Mimetic finite differences for elliptic problems

Franco Brezzi, Annalisa Buffa, Konstantin Lipnikov (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent H 1 norm are derived.

A mixed–FEM and BEM coupling for a three-dimensional eddy current problem

Salim Meddahi, Virginia Selgas (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.

About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation

Reiner Vanselow (2001)

Applications of Mathematics

Similarity:

The starting point of the analysis in this paper is the following situation: “In a bounded domain in 2 , let a finite set of points be given. A triangulation of that domain has to be found, whose vertices are the given points and which is ‘suitable’ for the linear conforming Finite Element Method (FEM).” The result of this paper is that for the discrete Poisson equation and under some weak additional assumptions, only the use of Delaunay triangulations preserves the maximum principle. ...

The discrete maximum principle for Galerkin solutions of elliptic problems

Tomáš Vejchodský (2012)

Open Mathematics

Similarity:

This paper provides an equivalent characterization of the discrete maximum principle for Galerkin solutions of general linear elliptic problems. The characterization is formulated in terms of the discrete Green’s function and the elliptic projection of the boundary data. This general concept is applied to the analysis of the discrete maximum principle for the higher-order finite elements in one-dimension and to the lowest-order finite elements on simplices of arbitrary dimension. The...

Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra

Gunar Matthies (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present families of scalar nonconforming finite elements of arbitrary order r 1 with optimal approximation properties on quadrilaterals and hexahedra. Their vector-valued versions together with a discontinuous pressure approximation of order r - 1 form inf-sup stable finite element pairs of order for the Stokes problem. The well-known elements by Rannacher and Turek are recovered in the case . A numerical comparison between conforming and nonconforming discretisations will be given. Since...

Electrowetting of a 3D drop: numerical modelling with electrostatic vector fields

Patrick Ciarlet Jr., Claire Scheid (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The electrowetting process is commonly used to handle very small amounts of liquid on a solid surface. This process can be modelled mathematically with the help of the shape optimization theory. However, solving numerically the resulting shape optimization problem is a very complex issue, even for reduced models that occur in simplified geometries. Recently, the second author obtained convincing results in the 2D axisymmetric case. In this paper, we propose and analyze a method that...