A mimetic discretization method for linear elasticity
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 44, Issue: 2, page 231-250
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBeirão Da Veiga, Lourenco. "A mimetic discretization method for linear elasticity." ESAIM: Mathematical Modelling and Numerical Analysis 44.2 (2010): 231-250. <http://eudml.org/doc/250765>.
@article{BeirãoDaVeiga2010,
abstract = {
A Mimetic Discretization method for the linear elasticity problem
in mixed weakly symmetric form is developed. The scheme is shown to
converge linearly in the mesh size, independently of the
incompressibility parameter λ, provided the discrete scalar
product satisfies two given conditions. Finally, a family of
algebraic scalar products which respect the above conditions is
detailed.
},
author = {Beirão Da Veiga, Lourenco},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Mimetic finite difference methods; linear
elasticity; finite element methods; mixed formulation; mimetic finite difference methods; linear elasticity},
language = {eng},
month = {3},
number = {2},
pages = {231-250},
publisher = {EDP Sciences},
title = {A mimetic discretization method for linear elasticity},
url = {http://eudml.org/doc/250765},
volume = {44},
year = {2010},
}
TY - JOUR
AU - Beirão Da Veiga, Lourenco
TI - A mimetic discretization method for linear elasticity
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 44
IS - 2
SP - 231
EP - 250
AB -
A Mimetic Discretization method for the linear elasticity problem
in mixed weakly symmetric form is developed. The scheme is shown to
converge linearly in the mesh size, independently of the
incompressibility parameter λ, provided the discrete scalar
product satisfies two given conditions. Finally, a family of
algebraic scalar products which respect the above conditions is
detailed.
LA - eng
KW - Mimetic finite difference methods; linear
elasticity; finite element methods; mixed formulation; mimetic finite difference methods; linear elasticity
UR - http://eudml.org/doc/250765
ER -
References
top- S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand, USA (1965).
- M. Amara and J.M. Thomas, Equilibrium finite elements for the linear elastic problem. Numer. Math.33 (1979) 367–383.
- D.N. Arnold, F. Brezzi and J. Douglas Jr., PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math.1 (1984) 347–367.
- D.N. Arnold, R.S. Falk and R. Winther, Differential complexes and stability of finite element methods II: the elasticity complex, in Compatible Spatial Discretizations, D. Arnold, P. Botchev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications142, Springer-Verlag (2005) 47–67.
- D.N. Arnold, R.S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp.76 (2007) 1699–1723.
- L. Beirão da Veiga, A residual based error estimator for the Mimetic Finite Difference method. Numer. Math.108 (2008) 387–406.
- L. Beirão da Veiga and G. Manzini, An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems with general diffusion tensors. Int. J. Num. Meth. Engrg.76 (2008) 1696–1723.
- L. Beirão da Veiga and G. Manzini, A higher-order formulation of the Mimetic Finite Difference method. SIAM J. Sci. Comput.31 (2008) 732–760.
- L. Beirão da Veiga, K. Lipnikov and G. Manzini, Convergence analysis of the high-order mimetic finite difference method. Numer. Math.113 (2009) 325–356.
- L. Beirão da Veiga, V. Gyrya, K. Lipnikov and G. Manzini, A mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys.228 (2009) 7215–7232.
- M. Berndt, K. Lipnikov, J.D. Moulton and M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation. J. Numer. Math.9 (2001) 253–284.
- M. Berndt, K. Lipnikov, M. Shashkov, M.F. Wheeler and I. Yotov, Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer. Anal.43 (2005) 1728–1749.
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, USA (1991).
- F. Brezzi, J. Douglas Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math.47 (1985) 217–235.
- F. Brezzi, D. Boffi and M. Fortin, Reduced symmetry elements in linear elasticity. Comm. Pure Appl. Anal.8 (2009) 95–121.
- F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal.43 (2005) 1872–1896.
- F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci.15 (2005) 1533–1553.
- F. Brezzi, K. Lipnikov and V. Simoncini, Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci.16 (2006) 275–298.
- F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comp. Meth. Appl. Mech. Engrg.196 (2007) 3682–3692.
- A. Cangiani and G. Manzini, Flux recontruction and pressure post-processing in mimetic finite difference methods. Comput. Meth. Appl. Mech. Engrg.197 (2008) 933–945.
- P.G. Ciarlet, Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, Studies in Mathematics and its Applications20. Amsterdam, North Holland (1988).
- B.X. Fraejis de Vebeuke, Stress function approach, in World Congress on the Finite Element Method in Structural Mechanics, Bornemouth (1975).
- V. Gryrya and K. Lipnikov, High-order mimetic finite difference method for the diffusion problems on polygonal meshes. J. Comput. Phys.227 (2008) 8841–8854.
- J. Hyman, M. Shashkov and S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneus non-isotropic materials. J. Comput. Phys.132 (1997) 130–148.
- J. Hyman, J. Morel, M. Shashkov and S. Steinberg, Mimetic finite difference methods for diffusion equations. Comput. Geosci.6 (2002) 333–352.
- Y. Kuznetsov, K. Lipnikov and M. Shashkov, The mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci.8 (2005) 301–324.
- K. Lipnikov, J. Morel and M. Shashkov, Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys.199 (2004) 589–597.
- K. Lipnikov, M. Shashkov and D. Svyatskiy, The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes. J. Comput. Phys.211 (2006) 473–491.
- J. Morel, M. Hall and M. Shaskov, A local support-operators diffusion discretization scheme for hexahedral meshes. J. Comput. Phys.170 (2001) 338–372.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.