The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A note on the a -Browder’s and a -Weyl’s theorems”

Single valued extension property and generalized Weyl’s theorem

M. Berkani, N. Castro, S. V. Djordjević (2006)

Mathematica Bohemica

Similarity:

Let T be an operator acting on a Banach space X , let σ ( T ) and σ B W ( T ) be respectively the spectrum and the B-Weyl spectrum of T . We say that T satisfies the generalized Weyl’s theorem if σ B W ( T ) = σ ( T ) E ( T ) , where E ( T ) is the set of all isolated eigenvalues of T . The first goal of this paper is to show that if T is an operator of topological uniform descent and 0 is an accumulation point of the point spectrum of T , then T does not have the single valued extension property at 0 , extending an earlier result of J. K. Finch...

Extended Weyl type theorems

M. Berkani, H. Zariouh (2009)

Mathematica Bohemica

Similarity:

An operator T acting on a Banach space X possesses property ( gw ) if σ a ( T ) σ SBF + - ( T ) = E ( T ) , where σ a ( T ) is the approximate point spectrum of T , σ SBF + - ( T ) is the essential semi-B-Fredholm spectrum of T and E ( T ) is the set of all isolated eigenvalues of T . In this paper we introduce and study two new properties ( b ) and ( gb ) in connection with Weyl type theorems, which are analogous respectively to Browder’s theorem and generalized Browder’s theorem. Among other, we prove that if T is a bounded linear operator acting on a Banach space...

B-Fredholm and Drazin invertible operators through localized SVEP

M. Amouch, H. Zguitti (2011)

Mathematica Bohemica

Similarity:

Let X be a Banach space and T be a bounded linear operator on X . We denote by S ( T ) the set of all complex λ such that T does not have the single-valued extension property at λ . In this note we prove equality up to S ( T ) between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl’s theorem for operator matrices and multiplier operators.