B-Fredholm and Drazin invertible operators through localized SVEP
Mathematica Bohemica (2011)
- Volume: 136, Issue: 1, page 39-49
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAmouch, M., and Zguitti, H.. "B-Fredholm and Drazin invertible operators through localized SVEP." Mathematica Bohemica 136.1 (2011): 39-49. <http://eudml.org/doc/197058>.
@article{Amouch2011,
abstract = {Let $X$ be a Banach space and $T$ be a bounded linear operator on $X$. We denote by $S(T)$ the set of all complex $\lambda \in \mathbb \{C\}$ such that $T$ does not have the single-valued extension property at $\lambda $. In this note we prove equality up to $S(T)$ between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl’s theorem for operator matrices and multiplier operators.},
author = {Amouch, M., Zguitti, H.},
journal = {Mathematica Bohemica},
keywords = {B-Fredholm operator; Drazin invertible operator; single-valued extension property; B-Fredholm operator; Drazin invertible operator; single-valued extension property (SVEP); generalised Weyl's theorem},
language = {eng},
number = {1},
pages = {39-49},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {B-Fredholm and Drazin invertible operators through localized SVEP},
url = {http://eudml.org/doc/197058},
volume = {136},
year = {2011},
}
TY - JOUR
AU - Amouch, M.
AU - Zguitti, H.
TI - B-Fredholm and Drazin invertible operators through localized SVEP
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 1
SP - 39
EP - 49
AB - Let $X$ be a Banach space and $T$ be a bounded linear operator on $X$. We denote by $S(T)$ the set of all complex $\lambda \in \mathbb {C}$ such that $T$ does not have the single-valued extension property at $\lambda $. In this note we prove equality up to $S(T)$ between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl’s theorem for operator matrices and multiplier operators.
LA - eng
KW - B-Fredholm operator; Drazin invertible operator; single-valued extension property; B-Fredholm operator; Drazin invertible operator; single-valued extension property (SVEP); generalised Weyl's theorem
UR - http://eudml.org/doc/197058
ER -
References
top- Aiena, P., Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers (2004), Dordrecht. (2004) Zbl1077.47001MR2070395
- Amouch, M., 10.1016/j.jmaa.2006.03.085, J. Math. Anal. Appl. 326 (2007), 1476-1484. (2007) Zbl1117.47007MR2280999DOI10.1016/j.jmaa.2006.03.085
- Amouch, M., 10.1007/s00009-009-0018-3, Mediterr. J. Math. 6 (2009), 461-470. (2009) Zbl1221.47009MR2565278DOI10.1007/s00009-009-0018-3
- Amouch, M., Zguitti, H., 10.1017/S0017089505002971, Glasg. Math. J. 48 (2006), 179-185. (2006) Zbl1097.47012MR2224938DOI10.1017/S0017089505002971
- Benhida, C., Zerouali, E. H., Zguitti, H., Spectral properties of upper triangular block operators, Acta Sci. Math. (Szeged) 71 (2005), 681-690. (2005) Zbl1105.47005MR2206603
- Berkani, M., 10.1007/BF01236475, Integral Equations Oper. Theory 34 (1999), 244-249. (1999) Zbl0939.47010MR1694711DOI10.1007/BF01236475
- Berkani, M., 10.4064/sm-140-2-163-175, Stud. Math. 140 (2000), 163-175. (2000) Zbl0978.47011MR1784630DOI10.4064/sm-140-2-163-175
- Berkani, M., 10.1090/S0002-9939-01-06291-8, Proc. Am. Math. Soc. 130 (2002), 1717-1723. (2002) MR1887019DOI10.1090/S0002-9939-01-06291-8
- Berkani, M., Amouch, M., Preservation of property () under perturbations, Acta Sci. Math. (Szeged) 74 (2008), 769-781. (2008) Zbl1199.47068MR2487945
- Berkani, M., Arroud, A., 10.1017/S144678870000896X, J. Aust. Math. Soc. 76 (2004), 291-302. (2004) Zbl1061.47021MR2041251DOI10.1017/S144678870000896X
- Berkani, M., Arroud, A., 10.1007/BF02874778, Rend. Circ. Mat. Palermo 55 (2006), 385-397. (2006) Zbl1123.47031MR2287069DOI10.1007/BF02874778
- Berkani, M., Castro, N., Djordjević, S. V., Single valued extension property and generalized Weyl's theorem, Math. Bohem. 131 (2006), 29-38. (2006) Zbl1114.47015MR2211001
- Berkani, M., Koliha, J. J., Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376. (2003) Zbl1050.47014MR1991673
- Duggal, B. P., Harte, R., Jeon, I. H., 10.1090/S0002-9939-03-07381-7, Proc. Am. Math. Soc. 132 (2004), 1345-1349. (2004) Zbl1062.47004MR2053338DOI10.1090/S0002-9939-03-07381-7
- Finch, J. K., 10.2140/pjm.1975.58.61, Pacific J. Math. 58 (1975), 61-69. (1975) Zbl0315.47002MR0374985DOI10.2140/pjm.1975.58.61
- Heuser, H. G., Functional Analysis, John Wiley Chichester (1982). (1982) Zbl0465.47001MR0640429
- Houimdi, M., Zguitti, H., Propriétés spectrales locales d'une matrice carrée des opérateurs, Acta Math. Vietnam. 25 (2000), 137-144. (2000) Zbl0970.47003MR1770883
- Laursen, K. B., 10.2140/pjm.1992.152.323, Pacific J. Math. 152 (1992), 323-336. (1992) Zbl0783.47028MR1141799DOI10.2140/pjm.1992.152.323
- Laursen, K. B., Neumann, M. M., An Introduction to Local Spectral Theory, Clarendon Oxford (2000). (2000) Zbl0957.47004MR1747914
- Lay, D. C., 10.1007/BF01351564, Math. Ann. 184 (1970), 197-214. (1970) Zbl0177.17102MR0259644DOI10.1007/BF01351564
- Mbekhta, M., Müller, V., 10.4064/sm-119-2-129-147, Stud. Math. 119 (1996), 129-147. (1996) MR1391472DOI10.4064/sm-119-2-129-147
- Zerouali, E. H., Zguitti, H., 10.4064/sm167-1-2, Stud. Math. 167 (2005), 17-28. (2005) Zbl1202.47005MR2133369DOI10.4064/sm167-1-2
- Zguitti, H., 10.1016/j.jmaa.2005.04.057, J. Math. Anal. Appl. 316 (2006), 373-381. (2006) Zbl1101.47002MR2201769DOI10.1016/j.jmaa.2005.04.057
- Zguitti, H., On the Drazin inverse for upper triangular operator matrices, Bull. Math. Anal. Appl. 2 (2010), 27-33. (2010) MR2658125
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.