B-Fredholm and Drazin invertible operators through localized SVEP

M. Amouch; H. Zguitti

Mathematica Bohemica (2011)

  • Volume: 136, Issue: 1, page 39-49
  • ISSN: 0862-7959

Abstract

top
Let X be a Banach space and T be a bounded linear operator on X . We denote by S ( T ) the set of all complex λ such that T does not have the single-valued extension property at λ . In this note we prove equality up to S ( T ) between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl’s theorem for operator matrices and multiplier operators.

How to cite

top

Amouch, M., and Zguitti, H.. "B-Fredholm and Drazin invertible operators through localized SVEP." Mathematica Bohemica 136.1 (2011): 39-49. <http://eudml.org/doc/197058>.

@article{Amouch2011,
abstract = {Let $X$ be a Banach space and $T$ be a bounded linear operator on $X$. We denote by $S(T)$ the set of all complex $\lambda \in \mathbb \{C\}$ such that $T$ does not have the single-valued extension property at $\lambda $. In this note we prove equality up to $S(T)$ between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl’s theorem for operator matrices and multiplier operators.},
author = {Amouch, M., Zguitti, H.},
journal = {Mathematica Bohemica},
keywords = {B-Fredholm operator; Drazin invertible operator; single-valued extension property; B-Fredholm operator; Drazin invertible operator; single-valued extension property (SVEP); generalised Weyl's theorem},
language = {eng},
number = {1},
pages = {39-49},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {B-Fredholm and Drazin invertible operators through localized SVEP},
url = {http://eudml.org/doc/197058},
volume = {136},
year = {2011},
}

TY - JOUR
AU - Amouch, M.
AU - Zguitti, H.
TI - B-Fredholm and Drazin invertible operators through localized SVEP
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 1
SP - 39
EP - 49
AB - Let $X$ be a Banach space and $T$ be a bounded linear operator on $X$. We denote by $S(T)$ the set of all complex $\lambda \in \mathbb {C}$ such that $T$ does not have the single-valued extension property at $\lambda $. In this note we prove equality up to $S(T)$ between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl’s theorem for operator matrices and multiplier operators.
LA - eng
KW - B-Fredholm operator; Drazin invertible operator; single-valued extension property; B-Fredholm operator; Drazin invertible operator; single-valued extension property (SVEP); generalised Weyl's theorem
UR - http://eudml.org/doc/197058
ER -

References

top
  1. Aiena, P., Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers (2004), Dordrecht. (2004) Zbl1077.47001MR2070395
  2. Amouch, M., 10.1016/j.jmaa.2006.03.085, J. Math. Anal. Appl. 326 (2007), 1476-1484. (2007) Zbl1117.47007MR2280999DOI10.1016/j.jmaa.2006.03.085
  3. Amouch, M., 10.1007/s00009-009-0018-3, Mediterr. J. Math. 6 (2009), 461-470. (2009) Zbl1221.47009MR2565278DOI10.1007/s00009-009-0018-3
  4. Amouch, M., Zguitti, H., 10.1017/S0017089505002971, Glasg. Math. J. 48 (2006), 179-185. (2006) Zbl1097.47012MR2224938DOI10.1017/S0017089505002971
  5. Benhida, C., Zerouali, E. H., Zguitti, H., Spectral properties of upper triangular block operators, Acta Sci. Math. (Szeged) 71 (2005), 681-690. (2005) Zbl1105.47005MR2206603
  6. Berkani, M., 10.1007/BF01236475, Integral Equations Oper. Theory 34 (1999), 244-249. (1999) Zbl0939.47010MR1694711DOI10.1007/BF01236475
  7. Berkani, M., Restriction of an operator to the range of its powers, Stud. Math. 140 (2000), 163-175. (2000) Zbl0978.47011MR1784630
  8. Berkani, M., 10.1090/S0002-9939-01-06291-8, Proc. Am. Math. Soc. 130 (2002), 1717-1723. (2002) MR1887019DOI10.1090/S0002-9939-01-06291-8
  9. Berkani, M., Amouch, M., Preservation of property ( g w ) under perturbations, Acta Sci. Math. (Szeged) 74 (2008), 769-781. (2008) Zbl1199.47068MR2487945
  10. Berkani, M., Arroud, A., 10.1017/S144678870000896X, J. Aust. Math. Soc. 76 (2004), 291-302. (2004) Zbl1061.47021MR2041251DOI10.1017/S144678870000896X
  11. Berkani, M., Arroud, A., 10.1007/BF02874778, Rend. Circ. Mat. Palermo 55 (2006), 385-397. (2006) Zbl1123.47031MR2287069DOI10.1007/BF02874778
  12. Berkani, M., Castro, N., Djordjević, S. V., Single valued extension property and generalized Weyl's theorem, Math. Bohem. 131 (2006), 29-38. (2006) Zbl1114.47015MR2211001
  13. Berkani, M., Koliha, J. J., Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376. (2003) Zbl1050.47014MR1991673
  14. Duggal, B. P., Harte, R., Jeon, I. H., 10.1090/S0002-9939-03-07381-7, Proc. Am. Math. Soc. 132 (2004), 1345-1349. (2004) Zbl1062.47004MR2053338DOI10.1090/S0002-9939-03-07381-7
  15. Finch, J. K., 10.2140/pjm.1975.58.61, Pacific J. Math. 58 (1975), 61-69. (1975) Zbl0315.47002MR0374985DOI10.2140/pjm.1975.58.61
  16. Heuser, H. G., Functional Analysis, John Wiley Chichester (1982). (1982) Zbl0465.47001MR0640429
  17. Houimdi, M., Zguitti, H., Propriétés spectrales locales d'une matrice carrée des opérateurs, Acta Math. Vietnam. 25 (2000), 137-144. (2000) Zbl0970.47003MR1770883
  18. Laursen, K. B., 10.2140/pjm.1992.152.323, Pacific J. Math. 152 (1992), 323-336. (1992) Zbl0783.47028MR1141799DOI10.2140/pjm.1992.152.323
  19. Laursen, K. B., Neumann, M. M., An Introduction to Local Spectral Theory, Clarendon Oxford (2000). (2000) Zbl0957.47004MR1747914
  20. Lay, D. C., 10.1007/BF01351564, Math. Ann. 184 (1970), 197-214. (1970) Zbl0177.17102MR0259644DOI10.1007/BF01351564
  21. Mbekhta, M., Müller, V., Axiomatic theory of spectrum II, Stud. Math. 119 (1996), 129-147. (1996) MR1391472
  22. Zerouali, E. H., Zguitti, H., 10.4064/sm167-1-2, Stud. Math. 167 (2005), 17-28. (2005) Zbl1202.47005MR2133369DOI10.4064/sm167-1-2
  23. Zguitti, H., 10.1016/j.jmaa.2005.04.057, J. Math. Anal. Appl. 316 (2006), 373-381. (2006) Zbl1101.47002MR2201769DOI10.1016/j.jmaa.2005.04.057
  24. Zguitti, H., On the Drazin inverse for upper triangular operator matrices, Bull. Math. Anal. Appl. 2 (2010), 27-33. (2010) MR2658125

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.