The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Second cohomology classes of the group of C 1 -flat diffeomorphisms”

The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products

Thomas Tradler (2008)

Annales de l’institut Fourier

Similarity:

We define a BV-structure on the Hochschild cohomology of a unital, associative algebra A with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomology of a unital A -algebra with a symmetric and non-degenerate -inner product.

On the cohomology of vector fields on parallelizable manifolds

Yuly Billig, Karl-Hermann Neeb (2008)

Annales de l’institut Fourier

Similarity:

In the present paper we determine for each parallelizable smooth compact manifold M the second cohomology spaces of the Lie algebra 𝒱 M of smooth vector fields on M with values in the module Ω ¯ M p = Ω M p / d Ω M p - 1 . The case of p = 1 is of particular interest since the gauge algebra of functions on M with values in a finite-dimensional simple Lie algebra has the universal central extension with center Ω ¯ M 1 , generalizing affine Kac-Moody algebras. The second cohomology H 2 ( 𝒱 M , Ω ¯ M 1 ) classifies twists of the semidirect product...

Local coordinates for SL ( n , C ) -character varieties of finite-volume hyperbolic 3-manifolds

Pere Menal-Ferrer, Joan Porti (2012)

Annales mathématiques Blaise Pascal

Similarity:

Given a finite-volume hyperbolic 3-manifold, we compose a lift of the holonomy in SL ( 2 , C ) with the n -dimensional irreducible representation of SL ( 2 , C ) in SL ( n , C ) . In this paper we give local coordinates of the SL ( n , C ) -character variety around the character of this representation. As a corollary, this representation is isolated among all representations that are unipotent at the cusps.