Displaying similar documents to “A Counterexample on Nontangential Convergence for Oscillatory Integrals”

Explicit lower bounds for linear forms in two logarithms

Nicolas Gouillon (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We give an explicit lower bound for linear forms in two logarithms. For this we specialize the so-called Schneider method with multiplicity described in []. We substantially improve the numerical constants involved in existing statements for linear forms in two logarithms, obtained from Baker’s method or Schneider’s method with multiplicity. Our constant is around 5 . 10 4 instead of 10 8 .

A constant in pluripotential theory

Zbigniew Błocki (1992)

Annales Polonici Mathematici

Similarity:

We compute the constant sup ( 1 / d e g P ) ( m a x S l o g | P | - S l o g | P | d σ ) : P a polynomial in n , where S denotes the euclidean unit sphere in n and σ its unitary surface measure.