A note on the Marcinkiewicz integral
Alberto Torchinsky, Shilin Wang (1990)
Colloquium Mathematicae
Similarity:
Alberto Torchinsky, Shilin Wang (1990)
Colloquium Mathematicae
Similarity:
Terasawa, Yutaka (2006)
Journal of Inequalities and Applications [electronic only]
Similarity:
A. Lerner (2000)
Studia Mathematica
Similarity:
We prove two pointwise estimates relating some classical maximal and singular integral operators. In particular, these estimates imply well-known rearrangement inequalities, and BLO-norm inequalities
M. Menárguez (1995)
Colloquium Mathematicae
Similarity:
It is known that the weak type (1,1) for the Hardy-Littlewood maximal operator can be obtained from the weak type (1,1) over Dirac deltas. This theorem is due to M. de Guzmán. In this paper, we develop a technique that allows us to prove such a theorem for operators and measure spaces in which Guzmán's technique cannot be used.
J. M. Aldaz (2000)
Czechoslovak Mathematical Journal
Similarity:
We study the behaviour of the -dimensional centered Hardy-Littlewood maximal operator associated to the family of cubes with sides parallel to the axes, improving the previously known lower bounds for the best constants that appear in the weak type inequalities.
Alberto Criado, Fernando Soria (2016)
Studia Mathematica
Similarity:
In recent work by Reguera and Thiele (2012) and by Reguera and Scurry (2013), two conjectures about joint weighted estimates for Calderón-Zygmund operators and the Hardy-Littlewood maximal function were refuted in the one-dimensional case. One of the key ingredients for these results is the construction of weights for which the value of the Hilbert transform is substantially bigger than that of the maximal function. In this work, we show that a similar construction is possible for classical...
Soulaymane Korry (2002)
Revista Matemática Complutense
Similarity:
We describe a class O of nonlinear operators which are bounded on the Lizorkin-Triebel spaces F (R), for 0 < s < 1 and 1 < p, q < ∞. As a corollary, we prove that the Hardy-Littlewood maximal operator is bounded on F (R), for 0 < s < 1 and 1 < p, q < ∞ ; this extends the result of Kinnunen (1997), valid for the Sobolev space H (R).
Akihiko Miyachi (1990)
Studia Mathematica
Similarity:
Leonardo Colzani, Javier Pérez Lázaro (2010)
Colloquium Mathematicae
Similarity:
We prove that peak shaped eigenfunctions of the one-dimensional uncentered Hardy-Littlewood maximal operator are symmetric and homogeneous. This implies that the norms of the maximal operator on L(p) spaces are not attained.
Robert Fefferman (1986)
Revista Matemática Iberoamericana
Similarity:
Clearly, one of the most basic contributions to the fields of real variables, partial differential equations and Fourier analysis in recent times has been the celebrated theorem of Calderón and Zygmund on the boundedness of singular integrals on R [1].