Displaying similar documents to “CLO spaces and central maximal operators”

On boundedness properties of certain maximal operators

M. Menárguez (1995)

Colloquium Mathematicae

Similarity:

It is known that the weak type (1,1) for the Hardy-Littlewood maximal operator can be obtained from the weak type (1,1) over Dirac deltas. This theorem is due to M. de Guzmán. In this paper, we develop a technique that allows us to prove such a theorem for operators and measure spaces in which Guzmán's technique cannot be used.

A remark on the centered n -dimensional Hardy-Littlewood maximal function

J. M. Aldaz (2000)

Czechoslovak Mathematical Journal

Similarity:

We study the behaviour of the n -dimensional centered Hardy-Littlewood maximal operator associated to the family of cubes with sides parallel to the axes, improving the previously known lower bounds for the best constants c n that appear in the weak type ( 1 , 1 ) inequalities.

Muckenhoupt-Wheeden conjectures in higher dimensions

Alberto Criado, Fernando Soria (2016)

Studia Mathematica

Similarity:

In recent work by Reguera and Thiele (2012) and by Reguera and Scurry (2013), two conjectures about joint weighted estimates for Calderón-Zygmund operators and the Hardy-Littlewood maximal function were refuted in the one-dimensional case. One of the key ingredients for these results is the construction of weights for which the value of the Hilbert transform is substantially bigger than that of the maximal function. In this work, we show that a similar construction is possible for classical...

Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces.

Soulaymane Korry (2002)

Revista Matemática Complutense

Similarity:

We describe a class O of nonlinear operators which are bounded on the Lizorkin-Triebel spaces F (R), for 0 < s < 1 and 1 < p, q < ∞. As a corollary, we prove that the Hardy-Littlewood maximal operator is bounded on F (R), for 0 < s < 1 and 1 < p, q < ∞ ; this extends the result of Kinnunen (1997), valid for the Sobolev space H (R).

Eigenfunctions of the Hardy-Littlewood maximal operator

Leonardo Colzani, Javier Pérez Lázaro (2010)

Colloquium Mathematicae

Similarity:

We prove that peak shaped eigenfunctions of the one-dimensional uncentered Hardy-Littlewood maximal operator are symmetric and homogeneous. This implies that the norms of the maximal operator on L(p) spaces are not attained.

Fourier analysis in several parameters.

Robert Fefferman (1986)

Revista Matemática Iberoamericana

Similarity:

Clearly, one of the most basic contributions to the fields of real variables, partial differential equations and Fourier analysis in recent times has been the celebrated theorem of Calderón and Zygmund on the boundedness of singular integrals on R [1].