The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle”

Common terms in binary recurrences

Erzsébet Orosz (2006)

Acta Mathematica Universitatis Ostraviensis

Similarity:

The purpose of this paper is to prove that the common terms of linear recurrences M ( 2 a , - 1 , 0 , b ) and N ( 2 c , - 1 , 0 , d ) have at most 2 common terms if p = 2 , and have at most three common terms if p > 2 where D and p are fixed positive integers and p is a prime, such that neither D nor D + p is perfect square, further a , b , c , d are nonzero integers satisfying the equations a 2 - D b 2 = 1 and c 2 - ( D + p ) d 2 = 1 .

On the distance between generalized Fibonacci numbers

Jhon J. Bravo, Carlos A. Gómez, Florian Luca (2015)

Colloquium Mathematicae

Similarity:

For an integer k ≥ 2, let ( F ( k ) ) be the k-Fibonacci sequence which starts with 0,..., 0,1 (k terms) and each term afterwards is the sum of the k preceding terms. This paper completes a previous work of Marques (2014) which investigated the spacing between terms of distinct k-Fibonacci sequences.

On the intersection of two distinct k -generalized Fibonacci sequences

Diego Marques (2012)

Mathematica Bohemica

Similarity:

Let k 2 and define F ( k ) : = ( F n ( k ) ) n 0 , the k -generalized Fibonacci sequence whose terms satisfy the recurrence relation F n ( k ) = F n - 1 ( k ) + F n - 2 ( k ) + + F n - k ( k ) , with initial conditions 0 , 0 , , 0 , 1 ( k terms) and such that the first nonzero term is F 1 ( k ) = 1 . The sequences F : = F ( 2 ) and T : = F ( 3 ) are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation F n ( k ) = F m ( ) . In this note, we use transcendental tools to provide a general method for finding the intersections F ( k ) F ( m ) which gives...

On the non-commutative neutrix product ln x + x + - s

Brian Fisher, Adem Kiliçman, Blagovest Damyanov, J. C. Ault (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The non-commutative neutrix product of the distributions ln x + and x + - s is proved to exist for s = 1 , 2 , ... and is evaluated for s = 1 , 2 . The existence of the non-commutative neutrix product of the distributions x + - r and x + - s is then deduced for r , s = 1 , 2 , ... and evaluated for r = s = 1 .