Displaying similar documents to “The integral points on elliptic curves y 2 = x 3 + ( 36 n 2 - 9 ) x - 2 ( 36 n 2 - 5 )

An elliptic curve having large integral points

Yanfeng He, Wenpeng Zhang (2010)

Czechoslovak Mathematical Journal

Similarity:

The main purpose of this paper is to prove that the elliptic curve E : y 2 = x 3 + 27 x - 62 has only the integral points ( x , y ) = ( 2 , 0 ) and ( 28844402 , ± 154914585540 ) , using elementary number theory methods and some known results on quadratic and quartic Diophantine equations.

Diophantine m -tuples and elliptic curves

Andrej Dujella (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

A Diophantine m -tuple is a set of m positive integers such that the product of any two of them is one less than a perfect square. In this paper we study some properties of elliptic curves of the form y 2 = ( a x + 1 ) ( b x + 1 ) ( c x + 1 ) , where { a , b , c } , is a Diophantine triple. In particular, we consider the elliptic curve E k defined by the equation y 2 = ( F 2 k x + 1 ) ( F 2 k + 2 x + 1 ) ( F 2 k + 4 x + 1 ) , where k 2 and F n , denotes the n -th Fibonacci number. We prove that if the rank of E k ( 𝐐 ) is equal to one, or k 50 , then all integer points on E k are given by ( x , y ) { ( 0 ± 1 ) , ( 4 F 2 k + 1 F 2 k + 2 F 2 k + 3 ± 2 F 2 k + 1 F 2 k + 2 - 1 × 2 F 2 k + 2 2 + 1 2 F 2 k + 2 F 2 k + 3 + 1 } .

Congruent numbers with higher exponents

Florian Luca, László Szalay (2006)

Acta Mathematica Universitatis Ostraviensis

Similarity:

This paper investigates the system of equations x 2 + a y m = z 1 2 , x 2 - a y m = z 2 2 in positive integers x , y , z 1 , z 2 , where a and m are positive integers with m 3 . In case of m = 2 we would obtain the classical problem of congruent numbers. We provide a procedure to solve the simultaneous equations above for a class of the coefficient a with the condition gcd ( x , z 1 ) = gcd ( x , z 2 ) = gcd ( z 1 , z 2 ) = 1 . Further, under same condition, we even prove a finiteness theorem for arbitrary nonzero a .

On the average value of the canonical height in higher dimensional families of elliptic curves

Wei Pin Wong (2014)

Acta Arithmetica

Similarity:

Given an elliptic curve E over a function field K = ℚ(T₁,...,Tₙ), we study the behavior of the canonical height h ̂ E ω of the specialized elliptic curve E ω with respect to the height of ω ∈ ℚⁿ. We prove that there exists a uniform nonzero lower bound for the average of the quotient ( h ̂ E ω ( P ω ) ) / h ( ω ) over all nontorsion P ∈ E(K).

The Diophantine Equation X³ = u+v over Real Quadratic Fields

Takaaki Kagawa (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let k be a real quadratic field and let k and k × be the ring of integers and the group of units, respectively. A method of solving the Diophantine equation X³ = u+v ( X k , u , v k × ) is developed.

On the Lebesgue-Nagell equation

Andrzej Dąbrowski (2011)

Colloquium Mathematicae

Similarity:

We completely solve the Diophantine equations x ² + 2 a q b = y (for q = 17, 29, 41). We also determine all C = p a p k a k and C = 2 a p a p k a k , where p , . . . , p k are fixed primes satisfying certain conditions. The corresponding Diophantine equations x² + C = yⁿ may be studied by the method used by Abu Muriefah et al. (2008) and Luca and Togbé (2009).