Displaying similar documents to “A priori estimates in geometry and Sobolev spaces on open manifolds”

Global Gronwall estimates for integral curves on Riemannian manifolds.

Michael Kunzinger, Hermann Schichl, Roland Steinbauer, James A. Vickers (2006)

Revista Matemática Complutense

Similarity:

We prove Gronwall-type estimates for the distance of integral curves of smooth vector fields on a Riemannian manifold. Such estimates are of central importance for all methods of solving ODEs in a verified way, i.e., with full control of roundoff errors. Our results may therefore be seen as a prerequisite for the generalization of such methods to the setting of Riemannian manifolds.

The configuration space of gauge theory on open manifolds of bounded geometry

Jürgen Eichhorn, Gerd Heber (1997)

Banach Center Publications

Similarity:

We define suitable Sobolev topologies on the space 𝒞 P ( B k , f ) of connections of bounded geometry and finite Yang-Mills action and the gauge group and show that the corresponding configuration space is a stratified space. The underlying open manifold is assumed to have bounded geometry.

Generalized S -space-forms

Alicia Prieto-Martín, Luis M. Fernández, Ana M. Fuentes (2013)

Publications de l'Institut Mathématique

Similarity:

On Riemannian tangent bundles.

Al-Aqeel, Adnan, Bejancu, Aurel (2006)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Similarity: