Displaying similar documents to “The space of exponentially decreasing entire functions and its application to solvability”

On the Range of the Fourier Transform Associated with the Spherical Mean Operator

Jelassi, M., Rachdi, L. (2004)

Fractional Calculus and Applied Analysis

Similarity:

We characterize the range of some spaces of functions by the Fourier transform associated with the spherical mean operator R and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schawrtz theorems.

Various kinds of sensitive singular perturbations

Nicolas Meunier, Jacqueline Sanchez-Hubert, Évariste Sanchez-Palencia (2007)

Annales mathématiques Blaise Pascal

Similarity:

We consider variational problems of P. D. E. depending on a small parameter ε when the limit process ε 0 implies vanishing of the higher order terms. The perturbation problem is said to be sensitive when the energy space of the limit problem is out of the distribution space, so that the limit problem is out of classical theory of P. D. E. We present here a review of the subject, including abstract convergence theorems and two very different model problems (the second one is presented for...

An Lp − Lq - Version of Morgan's Theorem Associated with Partial Differential Operators

Kamoun, Lotfi (2005)

Fractional Calculus and Applied Analysis

Similarity:

2000 Mathematics Subject Classification: 42B10, 43A32. In this paper we take the strip KL = [0, +∞[×[−Lπ, Lπ], where L is a positive integer. We consider, for a nonnegative real number α, two partial differential operators D and Dα on ]0, +∞[×] − Lπ, Lπ[. We associate a generalized Fourier transform Fα to the operators D and Dα. For this transform Fα, we establish an Lp − Lq − version of the Morgan's theorem under the assumption 1 ≤ p, q ≤ +∞.

Between the Paley-Wiener theorem and the Bochner tube theorem

Zofia Szmydt, Bogdan Ziemian (1995)

Annales Polonici Mathematici

Similarity:

We present the classical Paley-Wiener-Schwartz theorem [1] on the Laplace transform of a compactly supported distribution in a new framework which arises naturally in the study of the Mellin transformation. In particular, sufficient conditions for a function to be the Mellin (Laplace) transform of a compactly supported distribution are given in the form resembling the Bochner tube theorem [2].