Ergodic Properties in Quantum Systems
W. Thirring (1992)
Recherche Coopérative sur Programme n°25
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
W. Thirring (1992)
Recherche Coopérative sur Programme n°25
Similarity:
Carlo Pandiscia (2014)
Confluentes Mathematici
Similarity:
Using the Nagy dilation of linear contractions on Hilbert space and the Stinespring’s theorem for completely positive maps, we prove that any quantum dynamical system admits a dilation in the sense of Muhly and Solel which satisfies the same ergodic properties of the original quantum dynamical system.
V. Buonomano (1978)
Annales de l'I.H.P. Physique théorique
Similarity:
S. Doplicher, D. Kastler (1968)
Recherche Coopérative sur Programme n°25
Similarity:
Steven Zelditch (1994-1995)
Séminaire de théorie spectrale et géométrie
Similarity:
Krystyna Parczyk (1989)
Banach Center Publications
Similarity:
Klimek, Slawomir (2004)
Mathematical Physics Electronic Journal [electronic only]
Similarity:
Nishishiraho, Toshihiko (1998)
Journal of Convex Analysis
Similarity:
Donald S. Ornstein (1975)
Publications mathématiques et informatique de Rennes
Similarity:
A. Al-Hussaini (1974)
Annales Polonici Mathematici
Similarity:
Burkhard Kümmerer (1978)
Inventiones mathematicae
Similarity:
Zbigniew S. Kowalski (1984)
Colloquium Mathematicae
Similarity:
Roland Zweimüller (2004)
Colloquium Mathematicae
Similarity:
We present a very quick and easy proof of the classical Stepanov-Hopf ratio ergodic theorem, deriving it from Birkhoff's ergodic theorem by a simple inducing argument.
Uwe Franz, Adam Skalski (2008)
Colloquium Mathematicae
Similarity:
Recent results of M. Junge and Q. Xu on the ergodic properties of the averages of kernels in noncommutative -spaces are applied to the analysis of almost uniform convergence of operators induced by convolutions on compact quantum groups.
Teresa Bermúdez, Manuel González, Mostafa Mbekhta (2000)
Studia Mathematica
Similarity:
We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.
J. Woś (1987)
Colloquium Mathematicae
Similarity:
Janusz Woś (1987)
Colloquium Mathematicae
Similarity: