Displaying similar documents to “Norm inequalities for integral operators on cones”

Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents

Hongbin Wang, Chenchen Niu (2024)

Czechoslovak Mathematical Journal

Similarity:

We introduce a type of n -dimensional bilinear fractional Hardy-type operators with rough kernels and prove the boundedness of these operators and their commutators on central Morrey spaces with variable exponents. Furthermore, the similar definitions and results of multilinear fractional Hardy-type operators with rough kernels are obtained.

Fractional Hardy inequalities and visibility of the boundary

Lizaveta Ihnatsyeva, Juha Lehrbäck, Heli Tuominen, Antti V. Vähäkangas (2014)

Studia Mathematica

Similarity:

We prove fractional order Hardy inequalities on open sets under a combined fatness and visibility condition on the boundary. We demonstrate by counterexamples that fatness conditions alone are not sufficient for such Hardy inequalities to hold. In addition, we give a short exposition of various fatness conditions related to our main result, and apply fractional Hardy inequalities in connection with the boundedness of extension operators for fractional Sobolev spaces.

Weighted norm inequalities for multilinear fractional operators on Morrey spaces

Takeshi Iida, Enji Sato, Yoshihiro Sawano, Hitoshi Tanaka (2011)

Studia Mathematica

Similarity:

A weighted theory describing Morrey boundedness of fractional integral operators and fractional maximal operators is developed. A new class of weights adapted to Morrey spaces is proposed and a passage to the multilinear cases is covered.

Some fractional integral formulas for the Mittag-Leffler type function with four parameters

Praveen Agarwal, Juan J. Nieto (2015)

Open Mathematics

Similarity:

In this paper we present some results from the theory of fractional integration operators (of Marichev- Saigo-Maeda type) involving the Mittag-Leffler type function with four parameters ζ , γ, Eμ, ν[z] which has been recently introduced by Garg et al. Some interesting special cases are given to fractional integration operators involving some Special functions.

Fractional Powers of Almost Non-Negative Operators

Martínez, Celso, Sanz, Miguel, Redondo, Antonia (2005)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: Primary 47A60, 47D06. In this paper, we extend the theory of complex powers of operators to a class of operators in Banach spaces whose spectrum lies in C ]−∞, 0[ and whose resolvent satisfies an estimate ||(λ + A)(−1)|| ≤ (λ(−1) + λm) M for all λ > 0 and for some constants M > 0 and m ∈ R. This class of operators strictly contains the class of the non negative operators and the one of operators with polynomially bounded resolvent....