Displaying similar documents to “Exponential mapping for Lie groupoids”

On the linearization theorem for proper Lie groupoids

Marius Crainic, Ivan Struchiner (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We revisit the linearization theorems for proper Lie groupoids around general orbits (statements and proofs). In the fixed point case (known as Zung’s theorem) we give a shorter and more geometric proof, based on a Moser deformation argument. The passage to general orbits (Weinstein) is given a more conceptual interpretation: as a manifestation of Morita invariance. We also clarify the precise statements of the Linearization Theorem (there has been some confusion on this, which has propagated...

Lie groupoids of mappings taking values in a Lie groupoid

Habib Amiri, Helge Glöckner, Alexander Schmeding (2020)

Archivum Mathematicum

Similarity:

Endowing differentiable functions from a compact manifold to a Lie group with the pointwise group operations one obtains the so-called current groups and, as a special case, loop groups. These are prime examples of infinite-dimensional Lie groups modelled on locally convex spaces. In the present paper, we generalise this construction and show that differentiable mappings on a compact manifold (possibly with boundary) with values in a Lie groupoid form infinite-dimensional Lie groupoids...

Representations of étale Lie groupoids and modules over Hopf algebroids

Jure Kališnik (2011)

Czechoslovak Mathematical Journal

Similarity:

The classical Serre-Swan's theorem defines an equivalence between the category of vector bundles and the category of finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its Hopf algebroid that are of finite type and of constant rank. Both of these constructions are functorially...