On a theorem of H. P. Lotz on quasi-compactness of Markov operators
Wojciech Bartoszek (1987)
Colloquium Mathematicae
Similarity:
Wojciech Bartoszek (1987)
Colloquium Mathematicae
Similarity:
Ryszard Rudnicki (1988)
Annales Polonici Mathematici
Similarity:
Heinrich P. Lotz (1981)
Mathematische Zeitschrift
Similarity:
R. M. Phatarfod (1983)
Applicationes Mathematicae
Similarity:
Bezhaeva, Z.I., Oseledets, V.I. (2005)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Haruo Totoki (1983)
Annales Polonici Mathematici
Similarity:
Ryotaro Sato (1994)
Publicacions Matemàtiques
Similarity:
Let P1, ..., Pd be commuting Markov operators on L∞(X,F,μ), where (X,F,μ) is a probability measure space. Assuming that each Pi is either conservative or invertible, we prove that for every f in Lp(X,F,μ) with 1 ≤ p < ∞ the averages
Anf = (n + 1)-d Σ0≤ni≤n P1
Keilson, Julian (1998)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Roberts, Gareth O., Rosenthal, Jeffrey S. (1997)
Electronic Communications in Probability [electronic only]
Similarity:
Teresa Bermúdez, Manuel González, Mostafa Mbekhta (2000)
Studia Mathematica
Similarity:
We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.
Jones, Galin L. (2004)
Probability Surveys [electronic only]
Similarity:
M. Courbage, D. Hamdan (2001)
Colloquium Mathematicae
Similarity:
We construct a large family of ergodic non-Markovian processes with infinite memory having the same p-dimensional marginal laws of an arbitrary ergodic Markov chain or projection of Markov chains. Some of their spectral and mixing properties are given. We show that the Chapman-Kolmogorov equation for the ergodic transition matrix is generically satisfied by infinite memory processes.
J. Aaronson, H. Nakada, O. Sarig (2006)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Keilson, J., Vasicek, O.A. (1998)
Journal of Applied Mathematics and Stochastic Analysis
Similarity: