The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On invariant functions and ergodic measures of Markov operators on C(X)”

Multiparameter pointwise ergodic theorems for Markov operators on L.

Ryotaro Sato (1994)

Publicacions Matemàtiques

Similarity:

Let P1, ..., Pd be commuting Markov operators on L(X,F,μ), where (X,F,μ) is a probability measure space. Assuming that each Pi is either conservative or invertible, we prove that for every f in Lp(X,F,μ) with 1 ≤ p < ∞ the averages Anf = (n + 1)-d Σ0≤ni≤n P1

Operators with an ergodic power

Teresa Bermúdez, Manuel González, Mostafa Mbekhta (2000)

Studia Mathematica

Similarity:

We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.

A family of stationary processes with infinite memory having the same p-marginals. Ergodic and spectral properties

M. Courbage, D. Hamdan (2001)

Colloquium Mathematicae

Similarity:

We construct a large family of ergodic non-Markovian processes with infinite memory having the same p-dimensional marginal laws of an arbitrary ergodic Markov chain or projection of Markov chains. Some of their spectral and mixing properties are given. We show that the Chapman-Kolmogorov equation for the ergodic transition matrix is generically satisfied by infinite memory processes.