Displaying similar documents to “The Lusin Theorem and Horizontal Graphs in the Heisenberg Group”

A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension

Guy David, Marie Snipes (2013)

Analysis and Geometry in Metric Spaces

Similarity:

We give a non-probabilistic proof of a theorem of Naor and Neiman that asserts that if (E, d) is a doubling metric space, there is an integer N > 0, depending only on the metric doubling constant, such that for each exponent α ∈ (1/2; 1), one can find a bilipschitz mapping F = (E; dα ) ⃗ ℝ RN.

Uniform Gaussian Bounds for Subelliptic Heat Kernels and an Application to the Total Variation Flow of Graphs over Carnot Groups

Luca Capogna, Giovanna Citti, Maria Manfredini (2013)

Analysis and Geometry in Metric Spaces

Similarity:

In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0. The main new contribution are Gaussian-type bounds on the heat kernel for the σε metrics which are stable as ε→0 and extend the previous time-independent estimates in [16]. As an application we study well posedness of the total variation flow of graph surfaces...

The n -Point Condition and Rough CAT(0)

Stephen M. Buckley, Bruce Hanson (2013)

Analysis and Geometry in Metric Spaces

Similarity:

We show that for n ≥ 5, a length space (X; d) satisfies a rough n-point condition if and only if it is rough CAT(0). As a consequence, we show that the class of rough CAT(0) spaces is closed under reasonably general limit processes such as pointed and unpointed Gromov-Hausdorff limits and ultralimits.

Bounds on Capital Requirements For Bivariate Risk with Given Marginals and Partial Information on the Dependence

Carole Bernard, Yuntao Liu, Niall MacGillivray, Jinyuan Zhang (2013)

Dependence Modeling

Similarity:

Nelsen et al. [20] find bounds for bivariate distribution functions when there are constraints on the values of its quartiles. Tankov [25] generalizes this work by giving explicit expressions for the best upper and lower bounds for a bivariate copula when its values on a compact subset of [0; 1]2 are known. He shows that they are quasi-copulas and not necessarily copulas. Tankov [25] and Bernard et al. [3] both give sufficient conditions for these bounds to be copulas. In this note we...

Are law-invariant risk functions concave on distributions?

Beatrice Acciaio, Gregor Svindland (2013)

Dependence Modeling

Similarity:

While it is reasonable to assume that convex combinations on the level of random variables lead to a reduction of risk (diversification effect), this is no more true on the level of distributions. In the latter case, taking convex combinations corresponds to adding a risk factor. Hence, whereas asking for convexity of risk functions defined on random variables makes sense, convexity is not a good property to require on risk functions defined on distributions. In this paper we study the...

Mathematical modeling of semiconductor quantum dots based on the nonparabolic effective-mass approximation

Jinn-Liang Liu (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

Within the effective mass and nonparabolic band theory, a general framework of mathematical models and numerical methods is developed for theoretical studies of semiconductor quantum dots. It includes single-electron models and many-electron models of Hartree-Fock, configuration interaction, and current-spin density functional theory approaches. These models result in nonlinear eigenvalue problems from a suitable discretization. Cubic and quintic Jacobi-Davidson methods of block or nonblock...

Compactness of Special Functions of Bounded Higher Variation

Luigi Ambrosio, Francesco Ghiraldin (2013)

Analysis and Geometry in Metric Spaces

Similarity:

Given an open set Ω ⊂ Rm and n > 1, we introduce the new spaces GBnV(Ω) of Generalized functions of bounded higher variation and GSBnV(Ω) of Generalized special functions of bounded higher variation that generalize, respectively, the space BnV introduced by Jerrard and Soner in [43] and the corresponding SBnV space studied by De Lellis in [24]. In this class of spaces, which allow as in [43] the description of singularities of codimension n, the distributional jacobian Ju need not...

Genetic Exponentially Fitted Method for Solving Multi-dimensional Drift-diffusion Equations

M. R. Swager, Y. C. Zhou (2013)

Molecular Based Mathematical Biology

Similarity:

A general approach was proposed in this article to develop high-order exponentially fitted basis functions for finite element approximations of multi-dimensional drift-diffusion equations for modeling biomolecular electrodiffusion processes. Such methods are highly desirable for achieving numerical stability and efficiency. We found that by utilizing the one-to-one correspondence between the continuous piecewise polynomial space of degree k + 1 and the divergencefree vector space of...

On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions

José Luis López, Jesús Montejo–Gámez (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

This paper is intended to provide the reader with a review of the authors’ latest results dealing with the modeling of quantum dissipation/diffusion effects at the level of Schrödinger systems, in connection with the corresponding phase space and fluid formulations of such kind of phenomena, especially in what concerns the role of the Fokker–Planck mechanism in the description of open quantum systems and the macroscopic dynamics associated with some viscous hydrodynamic models of Euler...

Quantum graph spectra of a graphyne structure

Ngoc T. Do, Peter Kuchment (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

We study the dispersion relations and spectra of invariant Schrödinger operators on a graphyne structure (lithographite). In particular, description of different parts of the spectrum, band-gap structure, and Dirac points are provided.

Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation

Weihua Geng, Shan Zhao (2013)

Molecular Based Mathematical Biology

Similarity:

The Poisson-Boltzmann (PB) model is an effective approach for the electrostatics analysis of solvated biomolecules. The nonlinearity associated with the PB equation is critical when the underlying electrostatic potential is strong, but is extremely difficult to solve numerically. In this paper, we construct two operator splitting alternating direction implicit (ADI) schemes to efficiently and stably solve the nonlinear PB equation in a pseudo-transient continuation approach. The operator...