Displaying similar documents to “The space N * of holomorphic functions on bounded symmetric domains”

Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains

Ting Guo, Zhiming Feng, Enchao Bi (2021)

Czechoslovak Mathematical Journal

Similarity:

We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain D n , m p ( μ ) . The generalized Fock-Bargmann-Hartogs domain is defined by inequality e μ z 2 j = 1 m | ω j | 2 p < 1 , where ( z , ω ) n × m . In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain D n , m p ( μ ) becomes a holomorphic automorphism if and only if it keeps the function j = 1 m | ω j | 2 p e μ z 2 invariant.

Certain partial differential subordinations on some Reinhardt domains in n

Gabriela Kohr, Mirela Kohr (1997)

Annales Polonici Mathematici

Similarity:

We obtain an extension of Jack-Miller-Mocanu’s Lemma for holomorphic mappings defined in some Reinhardt domains in n . Using this result we consider first and second order partial differential subordinations for holomorphic mappings defined on the Reinhardt domain B 2 p with p ≥ 1.

On spaces of holomorphic functions in ℂⁿ

Diana D. Jiménez S., Lino F. Reséndis O., Luis M. Tovar S. (2014)

Banach Center Publications

Similarity:

Following the line of Ouyang et al. (1998) to study the p spaces of holomorphic functions in the unit ball of ℂⁿ, we present in this paper several results and relations among p ( ) , the α-Bloch, the Dirichlet p and the little p , 0 spaces.

An extension theorem for separately holomorphic functions with analytic singularities

Marek Jarnicki, Peter Pflug (2003)

Annales Polonici Mathematici

Similarity:

Let D j k j be a pseudoconvex domain and let A j D j be a locally pluriregular set, j = 1,...,N. Put X : = j = 1 N A × . . . × A j - 1 × D j × A j + 1 × . . . × A N k + . . . + k N . Let U be an open connected neighborhood of X and let M ⊊ U be an analytic subset. Then there exists an analytic subset M̂ of the “envelope of holomorphy” X̂ of X with M̂ ∩ X ⊂ M such that for every function f separately holomorphic on X∖M there exists an f̂ holomorphic on X̂∖M̂ with f ̂ | X M = f . The result generalizes special cases which were studied in [Ökt 1998], [Ökt 1999], [Sic 2001], and [Jar-Pfl 2001]. ...

On n-circled -domains of holomorphy

Marek Jarnicki, Peter Pflug (1997)

Annales Polonici Mathematici

Similarity:

We present various characterizations of n-circled domains of holomorphy G n with respect to some subspaces of ( G ) .

Extension of germs of holomorphic isometries up to normalizing constants with respect to the Bergman metric

Ngaiming Mok (2012)

Journal of the European Mathematical Society

Similarity:

We study the extension problem for germs of holomorphic isometries f : ( D ; x 0 ) ( Ω ; f ( x 0 ) ) up to normalizing constants between bounded domains in Euclidean spaces equipped with Bergman metrics d s D 2 on D and d s Ω 2 on Ω . Our main focus is on boundary extension for pairs of bounded domains ( D , Ω ) such that the Bergman kernel K D ( z , w ) extends meromorphically in ( z , w ¯ ) to a neighborhood of D ¯ × D , and such that the analogous statement holds true for the Bergman kernel K Ω ( ς , ξ ) on Ω . Assuming that ( D ; d s D 2 ) and ( Ω ; d s Ω 2 ) are complete Kähler manifolds, we prove that...

On L₁-subspaces of holomorphic functions

Anahit Harutyunyan, Wolfgang Lusky (2010)

Studia Mathematica

Similarity:

We study the spaces H μ ( Ω ) = f : Ω h o l o m o r p h i c : 0 R 0 2 π | f ( r e i φ ) | d φ d μ ( r ) < where Ω is a disc with radius R and μ is a given probability measure on [0,R[. We show that, depending on μ, H μ ( Ω ) is either isomorphic to l₁ or to ( A ) ( 1 ) . Here Aₙ is the space of all polynomials of degree ≤ n endowed with the L₁-norm on the unit sphere.

Proper holomorphic self-mappings of the minimal ball

Nabil Ourimi (2002)

Annales Polonici Mathematici

Similarity:

The purpose of this paper is to prove that proper holomorphic self-mappings of the minimal ball are biholomorphic. The proof uses the scaling technique applied at a singular point and relies on the fact that a proper holomorphic mapping f: D → Ω with branch locus V f is factored by automorphisms if and only if f * ( π ( D f - 1 ( f ( V f ) ) , x ) ) is a normal subgroup of π ( Ω f ( V f ) , b ) for some b Ω f ( V f ) and x f - 1 ( b ) .

Pluriharmonic extension in proper image domains

Rafał Czyż (2009)

Annales Polonici Mathematici

Similarity:

Let D j be a bounded hyperconvex domain in n j and set D = D × × D s , j=1,...,s, s ≥ 3. Also let Ω π be the image of D under the proper holomorphic map π. We characterize those continuous functions f : Ω π that can be extended to a real-valued pluriharmonic function in Ω π .

Approximation of sets defined by polynomials with holomorphic coefficients

Marcin Bilski (2012)

Annales Polonici Mathematici

Similarity:

Let X be an analytic set defined by polynomials whose coefficients a , . . . , a s are holomorphic functions. We formulate conditions on sequences a 1 , ν , . . . , a s , ν of holomorphic functions converging locally uniformly to a , . . . , a s , respectively, such that the sequence X ν of sets obtained by replacing a j ’s by a j , ν ’s in the polynomials converges to X.

A result on extension of C.R. functions

Makhlouf Derridj, John Erik Fornaess (1983)

Annales de l'institut Fourier

Similarity:

Let Ω an open set in C 4 near z 0 Ω , λ a suitable holomorphic function near z 0 . If we know that we can solve the following problem (see [M. Derridj, Annali. Sci. Norm. Pisa, Série IV, vol. IX (1981)]) : u = λ f , ( f is a ( 0 , 1 ) form, closed in U ( z 0 ) in U ( z 0 ) with supp ( u ) Ω U ( z 0 ) , then we deduce an extension result for C . R . functions on Ω U ( z 0 ) , as holomorphic fonctions in Ω V ( z 0 ) .

Complete pluripolar graphs in N

Nguyen Quang Dieu, Phung Van Manh (2014)

Annales Polonici Mathematici

Similarity:

Let F be the Cartesian product of N closed sets in ℂ. We prove that there exists a function g which is continuous on F and holomorphic on the interior of F such that Γ g ( F ) : = ( z , g ( z ) ) : z F is complete pluripolar in N + 1 . Using this result, we show that if D is an analytic polyhedron then there exists a bounded holomorphic function g such that Γ g ( D ) is complete pluripolar in N + 1 . These results are high-dimensional analogs of the previous ones due to Edlund [Complete pluripolar curves and graphs, Ann. Polon. Math....

Grauert's line bundle convexity, reduction and Riemann domains

Viorel Vâjâitu (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider a convexity notion for complex spaces X with respect to a holomorphic line bundle L over X . This definition has been introduced by Grauert and, when L is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if H 0 ( X , L ) separates each point of X , then X can be realized as a Riemann domain over the complex projective...

Shilov boundary for holomorphic functions on some classical Banach spaces

María D. Acosta, Mary Lilian Lourenço (2007)

Studia Mathematica

Similarity:

Let ( B X ) be the Banach space of all bounded and continuous functions on the closed unit ball B X of a complex Banach space X and holomorphic on the open unit ball, with sup norm, and let u ( B X ) be the subspace of ( B X ) of those functions which are uniformly continuous on B X . A subset B B X is a boundary for ( B X ) if f = s u p x B | f ( x ) | for every f ( B X ) . We prove that for X = d(w,1) (the Lorentz sequence space) and X = C₁(H), the trace class operators, there is a minimal closed boundary for ( B X ) . On the other hand, for X = , the Schreier...

Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains

Le He, Yanyan Tang (2024)

Czechoslovak Mathematical Journal

Similarity:

We consider a class of unbounded nonhyperbolic complete Reinhardt domains D n , m , k μ , p , s : = ( z , w 1 , , w m ) n × k 1 × × k m : w 1 2 p 1 e - μ 1 z s + + w m 2 p m e - μ m z s < 1 , where s , p 1 , , p m , μ 1 , , μ m are positive real numbers and n , k 1 , , k m are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space A 2 ( D n , m , k μ , p , s ) , then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.