Displaying similar documents to “Prediction of time series by statistical learning: general losses and fast rates”

Dependence of Stock Returns in Bull and Bear Markets

Jadran Dobric, Gabriel Frahm, Friedrich Schmid (2013)

Dependence Modeling

Similarity:

Despite of its many shortcomings, Pearson’s rho is often used as an association measure for stock returns. A conditional version of Spearman’s rho is suggested as an alternative measure of association. This approach is purely nonparametric and avoids any kind of model misspecification. We derive hypothesis tests for the conditional rank-correlation coefficients particularly arising in bull and bear markets and study their finite-sample performance by Monte Carlo simulation. Further,...

An inverse problem for adhesive contact and non-direct evaluation of material properties for nanomechanics applications

F.M. Borodich, B.A. Galanov, S.N. Gorb, M.Y. Prostov, Y.I. Prostov, M.M. Suarez-Alvarez (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

We show how the values of the effective elastic modulus of contacting solids and the work of adhesion, that are the crucial material parameters for application of theories of adhesive contact to nanomechanics, may be quantified from a single test using a non-direct approach (the Borodich-Galanov (BG) method). Usually these characteristics are not determined from the same test, e.g. often sharp pyramidal indenters are used to determine the elastic modulus from a nanoindentation test,...

Genetic Exponentially Fitted Method for Solving Multi-dimensional Drift-diffusion Equations

M. R. Swager, Y. C. Zhou (2013)

Molecular Based Mathematical Biology

Similarity:

A general approach was proposed in this article to develop high-order exponentially fitted basis functions for finite element approximations of multi-dimensional drift-diffusion equations for modeling biomolecular electrodiffusion processes. Such methods are highly desirable for achieving numerical stability and efficiency. We found that by utilizing the one-to-one correspondence between the continuous piecewise polynomial space of degree k + 1 and the divergencefree vector space of...

Uniform Gaussian Bounds for Subelliptic Heat Kernels and an Application to the Total Variation Flow of Graphs over Carnot Groups

Luca Capogna, Giovanna Citti, Maria Manfredini (2013)

Analysis and Geometry in Metric Spaces

Similarity:

In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0. The main new contribution are Gaussian-type bounds on the heat kernel for the σε metrics which are stable as ε→0 and extend the previous time-independent estimates in [16]. As an application we study well posedness of the total variation flow of graph surfaces...

Electronic properties of disclinated nanostructured cylinders

R. Pincak, J. Smotlacha, M. Pudlak (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

The electronic structure of the nanocylinder is investigated. Two cases of this kind of the nanostructure are explored: the defect-free nanocylinder and the nanocylinder whose geometry is perturbed by 2 heptagonal defects lying on the opposite sides. The characteristic quantity which is of our interest is the local density of states. To calculate it, the continuum gauge field-theory model will be used. In this model, the Dirac-like equation is solved on a curved surface. This procedure...

The Lusin Theorem and Horizontal Graphs in the Heisenberg Group

Piotr Hajłasz, Jacob Mirra (2013)

Analysis and Geometry in Metric Spaces

Similarity:

In this paper we prove that every collection of measurable functions fα , |α| = m, coincides a.e. withmth order derivatives of a function g ∈ Cm−1 whose derivatives of order m − 1 may have any modulus of continuity weaker than that of a Lipschitz function. This is a stronger version of earlier results of Lusin, Moonens-Pfeffer and Francos. As an application we construct surfaces in the Heisenberg group with tangent spaces being horizontal a.e.

On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions

José Luis López, Jesús Montejo–Gámez (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

This paper is intended to provide the reader with a review of the authors’ latest results dealing with the modeling of quantum dissipation/diffusion effects at the level of Schrödinger systems, in connection with the corresponding phase space and fluid formulations of such kind of phenomena, especially in what concerns the role of the Fokker–Planck mechanism in the description of open quantum systems and the macroscopic dynamics associated with some viscous hydrodynamic models of Euler...

Quantum optimal control using the adjoint method

Alfio Borzì (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal...

On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators

Elena Di Bernardino, Didier Rullière (2013)

Dependence Modeling

Similarity:

We study the impact of certain transformations within the class of Archimedean copulas. We give some admissibility conditions for these transformations, and define some equivalence classes for both transformations and generators of Archimedean copulas. We extend the r-fold composition of the diagonal section of a copula, from r ∈ N to r ∈ R. This extension, coupled with results on equivalence classes, gives us new expressions of transformations and generators. Estimators deriving directly...

Bounds on Capital Requirements For Bivariate Risk with Given Marginals and Partial Information on the Dependence

Carole Bernard, Yuntao Liu, Niall MacGillivray, Jinyuan Zhang (2013)

Dependence Modeling

Similarity:

Nelsen et al. [20] find bounds for bivariate distribution functions when there are constraints on the values of its quartiles. Tankov [25] generalizes this work by giving explicit expressions for the best upper and lower bounds for a bivariate copula when its values on a compact subset of [0; 1]2 are known. He shows that they are quasi-copulas and not necessarily copulas. Tankov [25] and Bernard et al. [3] both give sufficient conditions for these bounds to be copulas. In this note we...

Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation

Weihua Geng, Shan Zhao (2013)

Molecular Based Mathematical Biology

Similarity:

The Poisson-Boltzmann (PB) model is an effective approach for the electrostatics analysis of solvated biomolecules. The nonlinearity associated with the PB equation is critical when the underlying electrostatic potential is strong, but is extremely difficult to solve numerically. In this paper, we construct two operator splitting alternating direction implicit (ADI) schemes to efficiently and stably solve the nonlinear PB equation in a pseudo-transient continuation approach. The operator...