Displaying similar documents to “Nanoscale Systems: Mathematical Modeling, Theory and Applications. Author Index, Volume 1, 2012”

Group reflection and precompact paratopological groups

Mikhail Tkachenko (2013)

Topological Algebra and its Applications

Similarity:

We construct a precompact completely regular paratopological Abelian group G of size (2ω)+ such that all subsets of G of cardinality ≤ 2ω are closed. This shows that Protasov’s theorem on non-closed discrete subsets of precompact topological groups cannot be extended to paratopological groups. We also prove that the group reflection of the product of an arbitrary family of paratopological (even semitopological) groups is topologically isomorphic to the product of the group reflections...

Quantum optimal control using the adjoint method

Alfio Borzì (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal...

Perfectly supportable semigroups are σ-discrete in each Hausdorff shift-invariant topology

Taras Banakh, Igor Guran (2013)

Topological Algebra and its Applications

Similarity:

In this paper we introduce perfectly supportable semigroups and prove that they are σ-discrete in each Hausdorff shiftinvariant topology. The class of perfectly supportable semigroups includes each semigroup S such that FSym(X) ⊂ S ⊂ FRel(X) where FRel(X) is the semigroup of finitely supported relations on an infinite set X and FSym(X) is the group of finitely supported permutations of X.

On unitary Cauchy filters on topological monoids

Boris G. Averbukh (2013)

Topological Algebra and its Applications

Similarity:

For Hausdorff topological monoids, the concept of a unitary Cauchy net is a generalization of the concept of a fundamental sequence of reals. We consider properties and applications of such nets and of corresponding filters and prove, in particular, that the underlying set of a given monoid, endowed with the family of such filters, forms a Cauchy space whose convergence structure defines a uniform topology. A commutative monoid endowed with the corresponding uniformity is uniform. A...

On pseudocompact topological Brandt λ 0 -extensions of semitopological monoids

Oleg Gutik, Kateryna Pavlyk (2013)

Topological Algebra and its Applications

Similarity:

In the paper we investigate topological properties of a topological Brandt λ0-extension B0λ(S) of a semitopological monoid S with zero. In particular we prove that for every Tychonoff pseudocompact (resp., Hausdorff countably compact, Hausdorff compact) semitopological monoid S with zero there exists a unique semiregular pseudocompact (resp., Hausdorff countably compact, Hausdorff compact) extension B0λ(S) of S and establish their Stone-Cˇ ech and Bohr compactifications. We also describe...

Mesoscopic description of boundary effects in nanoscale heat transport

F.X. Àlvarez, V.A. Cimmelli, D. Jou, A. Sellitto (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

We review some of the most important phenomena due to the phonon-wall collisions in nonlocal heat transport in nanosystems, and show how they may be described through certain slip boundary conditions in phonon hydrodynamics. Heat conduction in nanowires of different cross sections and in thin layers is analyzed, and the dependence of the thermal conductivity on the geometry, as well as on the roughness is pointed out. We also analyze the effects of the roughness of the surface of the...

Cardinal invariants of paratopological groups

Iván Sánchez (2013)

Topological Algebra and its Applications

Similarity:

We show that a regular totally ω-narrow paratopological group G has countable index of regularity, i.e., for every neighborhood U of the identity e of G, we can find a neighborhood V of e and a countable family of neighborhoods of e in G such that ∩W∈γ VW−1⊆ U. We prove that every regular (Hausdorff) totally !-narrow paratopological group is completely regular (functionally Hausdorff). We show that the index of regularity of a regular paratopological group is less than or equal to the...

Mathematical modeling of semiconductor quantum dots based on the nonparabolic effective-mass approximation

Jinn-Liang Liu (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

Within the effective mass and nonparabolic band theory, a general framework of mathematical models and numerical methods is developed for theoretical studies of semiconductor quantum dots. It includes single-electron models and many-electron models of Hartree-Fock, configuration interaction, and current-spin density functional theory approaches. These models result in nonlinear eigenvalue problems from a suitable discretization. Cubic and quintic Jacobi-Davidson methods of block or nonblock...

Vibrational properties of nanographene

Sandeep Kumar Singh, F.M. Peeters (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

The eigenmodes and the vibrational density of states of the ground state configuration of graphene clusters are calculated using atomistic simulations. The modified Brenner potential is used to describe the carbon-carbon interaction and carbon-hydrogen interaction in case of H-passivated edges. For a given configuration of the C-atoms the eigenvectors and eigenfrequencies of the normal modes are obtained after diagonalisation of the dynamical matrix whose elements are the second derivative...

Nanonetworks: The graph theory framework for modeling nanoscale systems

Jelena Živkovic, Bosiljka Tadic (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

Nanonetwork is defined as a mathematical model of nanosize objects with biological, physical and chemical attributes, which are interconnected within certain dynamical process. To demonstrate the potentials of this modeling approach for quantitative study of complexity at nanoscale, in this survey, we consider three kinds of nanonetworks: Genes of a yeast are connected by weighted links corresponding to their coexpression along the cell cycle; Gold nanoparticles, arranged on a substrate,...

Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation

Weihua Geng, Shan Zhao (2013)

Molecular Based Mathematical Biology

Similarity:

The Poisson-Boltzmann (PB) model is an effective approach for the electrostatics analysis of solvated biomolecules. The nonlinearity associated with the PB equation is critical when the underlying electrostatic potential is strong, but is extremely difficult to solve numerically. In this paper, we construct two operator splitting alternating direction implicit (ADI) schemes to efficiently and stably solve the nonlinear PB equation in a pseudo-transient continuation approach. The operator...