Displaying similar documents to “On ɛ-optimal strategies in discounted Markov games”

Bi-personal stochastic transient Markov games with stopping times and total reward criterion

Martínez-Cortés Victor Manuel (2021)

Kybernetika

Similarity:

The article is devoted to a class of Bi-personal (players 1 and 2), zero-sum Markov games evolving in discrete-time on Transient Markov reward chains. At each decision time the second player can stop the system by paying terminal reward to the first player. If the system is not stopped the first player selects a decision and two things will happen: The Markov chain reaches next state according to the known transition law, and the second player must pay a reward to the first player. The...

Some remarks on equilibria in semi-Markov games

Andrzej Nowak (2000)

Applicationes Mathematicae

Similarity:

This paper is a first study of correlated equilibria in nonzero-sum semi-Markov stochastic games. We consider the expected average payoff criterion under a strong ergodicity assumption on the transition structure of the games. The main result is an extension of the correlated equilibrium theorem proven for discounted (discrete-time) Markov games in our joint paper with Raghavan. We also provide an existence result for stationary Nash equilibria in the limiting average payoff semi-Markov...

Nonzero-sum semi-Markov games with countable state spaces

Wojciech Połowczuk (2000)

Applicationes Mathematicae

Similarity:

We consider nonzero-sum semi-Markov games with a countable state space and compact metric action spaces. We assume that the payoff, mean holding time and transition probability functions are continuous on the action spaces. The main results concern the existence of Nash equilibria for nonzero-sum discounted semi-Markov games and a class of ergodic semi-Markov games with the expected average payoff criterion.

Markov stopping games with an absorbing state and total reward criterion

Rolando Cavazos-Cadena, Luis Rodríguez-Gutiérrez, Dulce María Sánchez-Guillermo (2021)

Kybernetika

Similarity:

This work is concerned with discrete-time zero-sum games with Markov transitions on a denumerable space. At each decision time player II can stop the system paying a terminal reward to player I, or can let the system to continue its evolution. If the system is not halted, player I selects an action which affects the transitions and receives a running reward from player II. Assuming the existence of an absorbing state which is accessible from any other state, the performance of a pair...

Handling a Kullback-Leibler divergence random walk for scheduling effective patrol strategies in Stackelberg security games

César U. S. Solis, Julio B. Clempner, Alexander S. Poznyak (2019)

Kybernetika

Similarity:

This paper presents a new model for computing optimal randomized security policies in non-cooperative Stackelberg Security Games (SSGs) for multiple players. Our framework rests upon the extraproximal method and its extension to Markov chains, within which we explicitly compute the unique Stackelberg/Nash equilibrium of the game by employing the Lagrange method and introducing the Tikhonov regularization method. We also consider a game-theory realization of the problem that involves...

Denumerable Markov stopping games with risk-sensitive total reward criterion

Manuel A. Torres-Gomar, Rolando Cavazos-Cadena, Hugo Cruz-Suárez (2024)

Kybernetika

Similarity:

This paper studies Markov stopping games with two players on a denumerable state space. At each decision time player II has two actions: to stop the game paying a terminal reward to player I, or to let the system to continue it evolution. In this latter case, player I selects an action affecting the transitions and charges a running reward to player II. The performance of each pair of strategies is measured by the risk-sensitive total expected reward of player I. Under mild continuity...

Risk-sensitive Markov stopping games with an absorbing state

Jaicer López-Rivero, Rolando Cavazos-Cadena, Hugo Cruz-Suárez (2022)

Kybernetika

Similarity:

This work is concerned with discrete-time Markov stopping games with two players. At each decision time player II can stop the game paying a terminal reward to player I, or can let the system to continue its evolution. In this latter case player I applies an action affecting the transitions and entitling him to receive a running reward from player II. It is supposed that player I has a no-null and constant risk-sensitivity coefficient, and that player II tries to minimize the utility...

Modeling shortest path games with Petri nets: a Lyapunov based theory

Julio Clempner (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper we introduce a new modeling paradigm for shortest path games representation with Petri nets. Whereas previous works have restricted attention to tracking the net using Bellman's equation as a utility function, this work uses a Lyapunov-like function. In this sense, we change the traditional cost function by a trajectory-tracking function which is also an optimal cost-to-target function. This makes a significant difference in the conceptualization of the problem domain,...

On infinite horizon multi-person stopping games with priorities

E. Z. Ferenstein (2006)

Banach Center Publications

Similarity:

We study nonzero-sum multi-person multiple stopping games with players' priorities. The existence of Nash equilibrium is proved. Examples of multi stopping of Markov chains are considered. The game may also be presented as a special case of a stochastic game which leads to many variations of it, in which stopping is a part of players' strategies.

Correlated equilibria in competitive staff selection problem

David M. Ramsey, Krzysztof Szajowski (2006)

Banach Center Publications

Similarity:

This paper deals with an extension of the concept of correlated strategies to Markov stopping games. The Nash equilibrium approach to solving nonzero-sum stopping games may give multiple solutions. An arbitrator can suggest to each player the decision to be applied at each stage based on a joint distribution over the players' decisions. This is a form of equilibrium selection. Examples of correlated equilibria in nonzero-sum games related to the staff selection competition in the case...

Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games

Kristal K. Trejo, Julio B. Clempner, Alexander S. Poznyak (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper we present the extraproximal method for computing the Stackelberg/Nash equilibria in a class of ergodic controlled finite Markov chains games. We exemplify the original game formulation in terms of coupled nonlinear programming problems implementing the Lagrange principle. In addition, Tikhonov's regularization method is employed to ensure the convergence of the cost-functions to a Stackelberg/Nash equilibrium point. Then, we transform the problem into a system of equations...

Optimal risk sharing as a cooperative game

Łukasz Kuciński (2011)

Applicationes Mathematicae

Similarity:

The problem of choosing an optimal insurance policy for an individual has recently been better understood, particularly due to the papers by Gajek and Zagrodny. In this paper we study its multi-agent version: we assume that insureds cooperate with one another to maximize their utility function. They create coalitions by bringing their risks to the pool and purchasing a common insurance contract. The resulting outcome is divided according to a certain rule called strategy. We address...

Optimal stopping for Markov Processes

Massimo Lorenzani (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In questa nota presentiamo dei nuovi risultati sul problema di tempo d’arresto ottimale per processi di Markov con tempo discreto.