Displaying similar documents to “Recursive and sequential density estimation”

Trend estimation problems in time-series analysis

E. Pleszczyńska

Similarity:

CONTENTS1. Introduction............................................................................................................................................. 52. F-estimators........................................................................................................................................... 63. The role of the tests J* and T* in polynomial trend estimation problems.................................. 124. Testing the equivalence of two linear processes..............................................................................

Some investigations in minimax estimation theory

Stanisław Trybuła

Similarity:

1. IntroductionThough the theory of minimax estimation was originated about thirty five years ago (see [7], [8], [9], [23]), there are still many unsolved problems in this area. Several papers have been devoted to statistical games in which the set of a priori distributions of the parameter was suitably restricted ([2], [10], [13]). Recently, special attention was paid to the problem of admissibility ([24], [3], [11], [12]).This paper is devoted to the problem of determining minimax...

Information inequalities for the minimax risk of sequential estimators (with applications)

Lesław Gajek, B. Mizera-Florczak (1998)

Applicationes Mathematicae

Similarity:

Information inequalities for the minimax risk of sequential estimators are derived in the case where the loss is measured by the squared error of estimation plus a linear functional of the number of observations. The results are applied to construct minimax sequential estimators of: the failure rate in an exponential model with censored data, the expected proportion of uncensored observations in the proportional hazards model, the odds ratio in a binomial distribution and the expectation...

On-line nonparametric estimation.

Rafail Khasminskii (2004)

SORT

Similarity:

A survey of some recent results on nonparametric on-line estimation is presented. The first result deals with an on-line estimation for a smooth signal S(t) in the classic 'signal plus Gaussian white noise' model. Then an analogous on-line estimator for the regression estimation problem with equidistant design is described and justified. Finally some preliminary results related to the on-line estimation for the diffusion observed process are described.

On the Recursive Estimation of the Location and of the Size of the Mode of a Probability Density

Djeddour, Khédidja, Mokkadem, Abdelkader, Pelletier, Mariane (2008)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 62G07, 62L20. Tsybakov [31] introduced the method of stochastic approximation to construct a recursive estimator of the location q of the mode of a probability density. The aim of this paper is to provide a companion algorithm to Tsybakov's algorithm, which allows to simultaneously recursively approximate the size m of the mode. We provide a precise study of the joint weak convergence rate of both estimators. Moreover, we introduce...

Minimax and bayes estimation in deconvolution problem

Mikhail Ermakov (2008)

ESAIM: Probability and Statistics

Similarity:

We consider a deconvolution problem of estimating a signal blurred with a random noise. The noise is assumed to be a stationary Gaussian process multiplied by a weight function function where and is a small parameter. The underlying solution is assumed to be infinitely differentiable. For this model we find asymptotically minimax and Bayes estimators. In the case of solutions having finite number of derivatives similar results were obtained in [G.K. Golubev and R.Z. Khasminskii,...

Numerical methods for linear minimax estimation

Norbert Gaffke, Berthold Heiligers (2000)

Discussiones Mathematicae Probability and Statistics

Similarity:

We discuss two numerical approaches to linear minimax estimation in linear models under ellipsoidal parameter restrictions. The first attacks the problem directly, by minimizing the maximum risk among the estimators. The second method is based on the duality between minimax and Bayes estimation, and aims at finding a least favorable prior distribution.

A sufficient condition for admissibility in linear estimation

Czesław Stępniak (1988)

Aplikace matematiky

Similarity:

It was recently shown that all estimators which are locally best in the relative interior of the parameter set, together with their limits constitute a complete class in linear estimation, both unbiased and biased. However, not all these limits are admissible. A sufficient condition for admissibility of a limit was given by the author (1986) for the case of unbiased estimation in a linear model with the natural parameter space. This paper extends this result to the general linear model...

Adaptive estimation of a density function using beta kernels

Karine Bertin, Nicolas Klutchnikoff (2014)

ESAIM: Probability and Statistics

Similarity:

In this paper we are interested in the estimation of a density − defined on a compact interval of ℝ− from independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski’s method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator...