Displaying similar documents to “Quasianalytic functions in the sense of Bernstein”

Approximation properties for modified ( p , q ) -Bernstein-Durrmeyer operators

Mohammad Mursaleen, Ahmed A. H. Alabied (2018)

Mathematica Bohemica

Similarity:

We introduce modified ( p , q ) -Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators D n , p , q * and compute the rate of convergence for the function f belonging to the class Lip M ( γ ) .

Mixed norm condition numbers for the univariate Bernstein basis

Tom Lyche, Karl Scherer (2006)

Banach Center Publications

Similarity:

We study mixed norm condition numbers for the univariate Bernstein basis for polynomials of degree n, that is, we measure the stability of the coefficients of the basis in the l q -sequence norm whereas the polynomials to be represented are measured in the L p -function norm. The resulting condition numbers differ from earlier results obtained for p = q.

Bad properties of the Bernstein numbers

Albrecht Pietsch (2008)

Studia Mathematica

Similarity:

We show that the classes p b e r n : = T : ( b ( T ) ) l p associated with the Bernstein numbers bₙ fail to be operator ideals. Moreover, p b e r n q b e r n r b e r n for 1/r = 1/p + 1/q.

Schroeder-Bernstein Quintuples for Banach Spaces

Elói Medina Galego (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let X and Y be two Banach spaces, each isomorphic to a complemented subspace of the other. In 1996, W. T. Gowers solved the Schroeder-Bernstein Problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In this paper, we obtain necessary and sufficient conditions on the quintuples (p,q,r,s,t) in ℕ for X to be isomorphic to Y whenever ⎧ X X p Y q , ⎨ ⎩ Y t X r Y s . Such quintuples are called Schroeder-Bernstein quintuples for Banach spaces and they yield a unification of the known decomposition...

Siciak’s extremal function via Bernstein and Markov constants for compact sets in N

Leokadia Bialas-Ciez (2012)

Annales Polonici Mathematici

Similarity:

The paper is concerned with the best constants in the Bernstein and Markov inequalities on a compact set E N . We give some basic properties of these constants and we prove that two extremal-like functions defined in terms of the Bernstein constants are plurisubharmonic and very close to the Siciak extremal function Φ E . Moreover, we show that one of these extremal-like functions is equal to Φ E if E is a nonpluripolar set with l i m n M ( E ) 1 / n = 1 where M ( E ) : = s u p | | | g r a d P | | | E / | | P | | E , the supremum is taken over all polynomials P of N variables...

Basic relations valid for the Bernstein spaces B ² σ and their extensions to larger function spaces via a unified distance concept

P. L. Butzer, R. L. Stens, G. Schmeisser (2014)

Banach Center Publications

Similarity:

Some basic theorems and formulae (equations and inequalities) of several areas of mathematics that hold in Bernstein spaces B σ p are no longer valid in larger spaces. However, when a function f is in some sense close to a Bernstein space, then the corresponding relation holds with a remainder or error term. This paper presents a new, unified approach to these errors in terms of the distance of f from B σ p . The difficult situation of derivative-free error estimates is also covered. ...

A note on extensions of Pełczyński's decomposition method in Banach spaces

Elói Medina Galego (2007)

Studia Mathematica

Similarity:

Let X,Y,A and B be Banach spaces such that X is isomorphic to Y ⊕ A and Y is isomorphic to X ⊕ B. In 1996, W. T. Gowers solved the Schroeder-Bernstein problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In the present paper, we give a necessary and sufficient condition on sextuples (p,q,r,s,u,v) in ℕ with p + q ≥ 2, r + s ≥ 1 and u, v ∈ ℕ* for X to be isomorphic to Y whenever these spaces satisfy the following decomposition scheme: ⎧ X u X p Y q , ⎨ ⎩ Y v A r B s . Namely, Ω =...

On the Bernstein-Walsh-Siciak theorem

Rafał Pierzchała (2012)

Studia Mathematica

Similarity:

By the Oka-Weil theorem, each holomorphic function f in a neighbourhood of a compact polynomially convex set K N can be approximated uniformly on K by complex polynomials. The famous Bernstein-Walsh-Siciak theorem specifies the Oka-Weil result: it states that the distance (in the supremum norm on K) of f to the space of complex polynomials of degree at most n tends to zero not slower than the sequence M(f)ρ(f)ⁿ for some M(f) > 0 and ρ(f) ∈ (0,1). The aim of this note is to deduce the...

Approximation polynômiale dans des classes de jets

Moulay Taïb Belghiti, Boutayeb El Ammari, Laurent P. Gendre (2015)

Banach Center Publications

Similarity:

In this paper we obtain results on approximation, in the multidimensional complex case, of functions from ( K ) by complex polynomials. In particular, we generalize the results of Pawłucki and Pleśniak (1986) for the real case and of Siciak (1993) in the case of one complex variable. Furthermore, we extend the results of Baouendi and Goulaouic (1971) who obtained the order of approximation in the case of Gevrey classes over real compacts with smooth analytic boundary and we present the orders...

Sets with the Bernstein and generalized Markov properties

Mirosław Baran, Agnieszka Kowalska (2014)

Annales Polonici Mathematici

Similarity:

It is known that for C determining sets Markov’s property is equivalent to Bernstein’s property. We are interested in finding a generalization of this fact for sets which are not C determining. In this paper we give examples of sets which are not C determining, but have the Bernstein and generalized Markov properties.

A C(K) Banach space which does not have the Schroeder-Bernstein property

Piotr Koszmider (2012)

Studia Mathematica

Similarity:

We construct a totally disconnected compact Hausdorff space K₊ which has clopen subsets K₊” ⊆ K₊’ ⊆ K₊ such that K₊” is homeomorphic to K₊ and hence C(K₊”) is isometric as a Banach space to C(K₊) but C(K₊’) is not isomorphic to C(K₊). This gives two nonisomorphic Banach spaces (necessarily nonseparable) of the form C(K) which are isomorphic to complemented subspaces of each other (even in the above strong isometric sense), providing a solution to the Schroeder-Bernstein problem for Banach...

Bernstein and De Giorgi type problems: new results via a geometric approach

Alberto Farina, Berardino Sciunzi, Enrico Valdinoci (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the form div a ( | u ( x ) | ) u ( x ) + f ( u ( x ) ) = 0 . Our setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in  2 and  3 and of the Bernstein problem on the flatness of minimal area graphs in  3 . A one-dimensional symmetry result in the half-space is also obtained as a byproduct...

Approximation by weighted polynomials in k

Maritza M. Branker (2005)

Annales Polonici Mathematici

Similarity:

We apply pluripotential theory to establish results in k concerning uniform approximation by functions of the form wⁿPₙ where w denotes a continuous nonnegative function and Pₙ is a polynomial of degree at most n. Then we use our work to show that on the intersection of compact sections Σ k a continuous function on Σ is uniformly approximable by θ-incomplete polynomials (for a fixed θ, 0 < θ < 1) iff f vanishes on θ²Σ. The class of sets Σ expressible as the intersection of compact...

Some duality results on bounded approximation properties of pairs

Eve Oja, Silja Treialt (2013)

Studia Mathematica

Similarity:

The main result is as follows. Let X be a Banach space and let Y be a closed subspace of X. Assume that the pair ( X * , Y ) has the λ-bounded approximation property. Then there exists a net ( S α ) of finite-rank operators on X such that S α ( Y ) Y and | | S α | | λ for all α, and ( S α ) and ( S * α ) converge pointwise to the identity operators on X and X*, respectively. This means that the pair (X,Y) has the λ-bounded duality approximation property.

Lagrange approximation in Banach spaces

Lisa Nilsson, Damián Pinasco, Ignacio M. Zalduendo (2015)

Czechoslovak Mathematical Journal

Similarity:

Starting from Lagrange interpolation of the exponential function e z in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space E . Given such a representable entire funtion f : E , in order to study the approximation problem and the uniform convergence of these polynomials to f on bounded sets of E , we present a sufficient growth condition on...

An approximation property with respect to an operator ideal

Juan Manuel Delgado, Cándido Piñeiro (2013)

Studia Mathematica

Similarity:

Given an operator ideal , we say that a Banach space X has the approximation property with respect to if T belongs to S T : S ( X ) ¯ τ c for every Banach space Y and every T ∈ (Y,X), τ c being the topology of uniform convergence on compact sets. We present several characterizations of this type of approximation property. It is shown that some of the existing approximation properties in the literature may be included in this setting.

On the compact approximation property

Vegard Lima, Åsvald Lima, Olav Nygaard (2004)

Studia Mathematica

Similarity:

We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space = S ∘ T: S compact operator on X is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net ( S γ ) of compact operators on X such that s u p γ | | S γ T | | | | T | | and S γ I X in the strong operator topology. Similar results for dual spaces are also proved.