A Relation Between Equivariant and Non-equivariant Stable Cohomotopy.
J.C. Becker (1988)
Mathematische Zeitschrift
Similarity:
J.C. Becker (1988)
Mathematische Zeitschrift
Similarity:
Peter Löffler (1977/78)
Manuscripta mathematica
Similarity:
Christof Mackrodt (1991)
Manuscripta mathematica
Similarity:
Sławomir Kwasik (1983)
Compositio Mathematica
Similarity:
Bruner, Robert, Greenlees, John (1995)
Experimental Mathematics
Similarity:
Dieter Erle (1975)
Compositio Mathematica
Similarity:
Chun-Nip Lee (1996)
Mathematische Zeitschrift
Similarity:
Marek Golasiński, Daciberg L. Gonçalves, Peter N. Wong (2009)
Banach Center Publications
Similarity:
In this paper, we generalize the equivariant homotopy groups or equivalently the Rhodes groups. We establish a short exact sequence relating the generalized Rhodes groups and the generalized Fox homotopy groups and we introduce Γ-Rhodes groups, where Γ admits a certain co-grouplike structure. Evaluation subgroups of Γ-Rhodes groups are discussed.
Gunnar Carlsson (1991)
Inventiones mathematicae
Similarity:
Shyuichi Izumiya (1979)
Manuscripta mathematica
Similarity:
E. N. Dancer, K. Gęba, S. M. Rybicki (2005)
Fundamenta Mathematicae
Similarity:
Let V be an orthogonal representation of a compact Lie group G and let S(V),D(V) be the unit sphere and disc of V, respectively. If F: V → ℝ is a G-invariant C¹-map then the G-equivariant gradient C⁰-map ∇F: V → V is said to be admissible provided that . We classify the homotopy classes of admissible G-equivariant gradient maps ∇F: (D(V),S(V)) → (V,V∖0).