The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities”

On generalized Moser-Trudinger inequalities without boundary condition

Robert Černý (2012)

Czechoslovak Mathematical Journal

Similarity:

We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum.

Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces

Robert Černý (2012)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let n 2 and Ω n be a bounded set. We give a Moser-type inequality for an embedding of the Orlicz-Sobolev space W 0 L Φ ( Ω ) , where the Young function Φ behaves like t n log α ( t ) , α < n - 1 , for t large, into the Zygmund space Z 0 n - 1 - α n ( Ω ) . We also study the same problem for the embedding of the generalized Lorentz-Sobolev space W 0 m L n m , q log α L ( Ω ) , m < n , q ( 1 , ] , α < 1 q ' , embedded into the Zygmund space Z 0 1 q ' - α ( Ω ) .

Decomposition and Moser's lemma.

David E. Edmunds, Miroslav Krbec (2002)

Revista Matemática Complutense

Similarity:

Using the idea of the optimal decomposition developed in recent papers (Edmunds-Krbec, 2000) and in Cruz-Uribe-Krbec we study the boundedness of the operator Tg(x) = ∫ g(u)du / u, x ∈ (0,1), and its logarithmic variant between Lorentz spaces and exponential Orlicz and Lorentz-Orlicz spaces. These operators are naturally linked with Moser's lemma, O'Neil's convolution inequality, and estimates for functions with prescribed rearrangement. We give sufficient conditions for...