The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Classification of solvable groups possessing a unique nonlinear non-faithful irreducible character”

Finite groups with eight non-linear irreducible characters

Yakov Berkovich (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

This Note contains the complete list of finite groups, having exactly eight non-linear irreducible characters. In section 4 we consider in full details some typical cases.

On sM-group.

How, Guan Aun (2003)

Bulletin of the Malaysian Mathematical Sciences Society. Second Series

Similarity:

On zeros of characters of finite groups

Jinshan Zhang, Zhencai Shen, Dandan Liu (2010)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G and a non-linear irreducible complex character χ of G write υ ( χ ) = { g G χ ( g ) = 0 } . In this paper, we study the finite non-solvable groups G such that υ ( χ ) consists of at most two conjugacy classes for all but one of the non-linear irreducible characters χ of G . In particular, we characterize a class of finite solvable groups which are closely related to the above-mentioned question and are called solvable ϕ -groups. As a corollary, we answer Research Problem 2 in [Y. Berkovich and L. Kazarin:...

Subnormal, permutable, and embedded subgroups in finite groups

James Beidleman, Mathew Ragland (2011)

Open Mathematics

Similarity:

The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is...