The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On Hall subgroups of a finite group”

Subnormal, permutable, and embedded subgroups in finite groups

James Beidleman, Mathew Ragland (2011)

Open Mathematics

Similarity:

The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is...

Groups with every subgroup ascendant-by-finite

Sergio Camp-Mora (2013)

Open Mathematics

Similarity:

A subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.

Erratum to: “Subnormal, permutable, and embedded subgroups in finite groups”

James Beidleman, Mathew Ragland (2012)

Open Mathematics

Similarity:

The original version of the article was published in Central European Journal of Mathematics, 2011, 9(4), 915–921, DOI: 10.2478/s11533-011-0029-8. Unfortunately, the original version of this article contains a mistake: Lemma 2.1 (2) is not true. We correct Lemma 2.2 (2) and Theorem 1.1 in our paper where this lemma was used.

On S -quasinormal and c -normal subgroups of a finite group

Shirong Li, Yangming Li (2008)

Czechoslovak Mathematical Journal

Similarity:

Let be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are presented: (1) G if and only if there is a normal subgroup H such that G / H and every maximal subgroup of all Sylow subgroups of H is either c -normal or S -quasinormally embedded in G . (2) G if and only if there is a normal subgroup H such that G / H and every maximal subgroup of all Sylow subgroups of F * ( H ) , the generalized Fitting subgroup of H , is either c -normal...

On some soluble groups in which U -subgroups form a lattice

Leonid A. Kurdachenko, Igor Ya. Subbotin (2007)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The article is dedicated to groups in which the set of abnormal and normal subgroups ( U -subgroups) forms a lattice. A complete description of these groups under the additional restriction that every counternormal subgroup is abnormal is obtained.