Normal restrictions of the noncofinal ideal on
Pierre Matet (2013)
Fundamenta Mathematicae
Similarity:
We discuss the problem of whether there exists a restriction of the noncofinal ideal on that is normal.
Pierre Matet (2013)
Fundamenta Mathematicae
Similarity:
We discuss the problem of whether there exists a restriction of the noncofinal ideal on that is normal.
Marta Frankowska, Andrzej Nowik (2011)
Colloquium Mathematicae
Similarity:
We prove that the ideal (a) defined by the density topology is not generated. This answers a question of Z. Grande and E. Strońska.
Stephen Scheinberg (2021)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
The topology of the maximal-ideal space of is discussed.
F. Azarpanah, O. A. S. Karamzadeh, S. Rahmati (2008)
Colloquium Mathematicae
Similarity:
Let be the socle of C(X). It is shown that each prime ideal in is essential. For each h ∈ C(X), we prove that every prime ideal (resp. z-ideal) of C(X)/(h) is essential if and only if the set Z(h) of zeros of h contains no isolated points (resp. int Z(h) = ∅). It is proved that , where dim C(X) denotes the Goldie dimension of C(X), and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a countable number of nonisolated points....
Emel Aslankarayiğit Uğurlu, El Mehdi Bouba, Ünsal Tekir, Suat Koç (2023)
Czechoslovak Mathematical Journal
Similarity:
We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let be a commutative ring with a nonzero identity and a proper ideal of . The proper ideal is said to be a weakly strongly quasi-primary ideal if whenever for some , then or Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero...
Anna Stasica (2003)
Annales Polonici Mathematici
Similarity:
We obtain, in a simple way, an estimate for the Noether exponent of an ideal I without embedded components (i.e. we estimate the smallest number μ such that ).
Masato Kurihara (1999)
Journal of the European Mathematical Society
Similarity:
In this paper, for a totally real number field we show the ideal class group of is trivial. We also study the -component of the ideal class group of the cyclotomic -extension.
J. Cabello, E. Nieto (1998)
Studia Mathematica
Similarity:
C.-M. Cho and W. B. Johnson showed that if a subspace E of , 1 < p < ∞, has the compact approximation property, then K(E) is an M-ideal in ℒ(E). We prove that for every r,s ∈ ]0,1] with , the James space can be provided with an equivalent norm such that an arbitrary subspace E has the metric compact approximation property iff there is a norm one projection P on ℒ(E)* with Ker P = K(E)⊥ satisfying ∥⨍∥ ≥ r∥Pf∥ + s∥φ - Pf∥ ∀⨍ ∈ ℒ(E)*. A similar result is proved for subspaces of...
Gülşen Ulucak, Ece Yetkin Çelikel (2020)
Czechoslovak Mathematical Journal
Similarity:
Tamás Terpai (2009)
Banach Center Publications
Similarity:
We calculate the mapping and obtain a generating system of its kernel. As a corollary, bounds on the codimension of fold maps from real projective spaces to Euclidean space are calculated and the rank of a singular bordism group is determined.
Barnabás Farkas, Lajos Soukup (2009)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Given an ideal on let () be minimum of the cardinalities of infinite (uncountable) maximal -almost disjoint subsets of . We show that if is a summable ideal; but for any tall density ideal including the density zero ideal . On the other hand, you have for any analytic -ideal , and for each density ideal . For each ideal on denote and the unbounding and dominating numbers of where iff . We show that and for each analytic -ideal . Given a Borel...
Alfred Czogała, Beata Rothkegel (2014)
Acta Arithmetica
Similarity:
Let K be a number field. Assume that the 2-rank of the ideal class group of K is equal to the 2-rank of the narrow ideal class group of K. Moreover, assume K has a unique dyadic prime and the class of is a square in the ideal class group of K. We prove that if ₁,...,ₙ are finite primes of K such that ∙ the class of is a square in the ideal class group of K for every i ∈ 1,...,n, ∙ -1 is a local square at for every nondyadic , then ₁,...,ₙ is the wild set of some self-equivalence...
Brahim Boudine (2023)
Mathematica Bohemica
Similarity:
A commutative ring with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length . Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length .
Tomasz Weiss (2018)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We prove in ZFC that every additive set is additive, thus we solve Problem 20 from paper [Weiss T., A note on the intersection ideal , Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437-445] in the negative.
Maciej Skwarczyński (1981)
Annales Polonici Mathematici
Similarity:
Ali Yassine, Mohammad Javad Nikmehr, Reza Nikandish (2024)
Czechoslovak Mathematical Journal
Similarity:
Let be a commutative ring with identity. We study the concept of strongly 1-absorbing primary ideals which is a generalization of -ideals and a subclass of -absorbing primary ideals. A proper ideal of is called strongly 1-absorbing primary if for all nonunit elements such that , it is either or . Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings over which every semi-primary ideal is strongly 1-absorbing primary, and rings over which...