The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The Christensen measurable solutions of a generalization of the Gołąb-Schinzel functional equation”

Semicontinuous integrands as jointly measurable maps

Oriol Carbonell-Nicolau (2014)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Suppose that ( X , 𝒜 ) is a measurable space and Y is a metrizable, Souslin space. Let 𝒜 u denote the universal completion of 𝒜 . For x X , let f ̲ ( x , · ) be the lower semicontinuous hull of f ( x , · ) . If f : X × Y ¯ is ( 𝒜 u ( Y ) , ( ¯ ) ) -measurable, then f ̲ is ( 𝒜 u ( Y ) , ( ¯ ) ) -measurable.

A problem with almost everywhere equality

Piotr Niemiec (2012)

Annales Polonici Mathematici

Similarity:

A topological space Y is said to have (AEEP) if the following condition is satisfied: Whenever (X,) is a measurable space and f,g: X → Y are two measurable functions, then the set Δ(f,g) = x ∈ X: f(x) = g(x) is a member of . It is shown that a metrizable space Y has (AEEP) iff the cardinality of Y is not greater than 2 .

Parametrization of Riemann-measurable selections for multifunctions of two variables with application to differential inclusions

Giovanni Anello, Paolo Cubiotti (2004)

Annales Polonici Mathematici

Similarity:

We consider a multifunction F : T × X 2 E , where T, X and E are separable metric spaces, with E complete. Assuming that F is jointly measurable in the product and a.e. lower semicontinuous in the second variable, we establish the existence of a selection for F which is measurable with respect to the first variable and a.e. continuous with respect to the second one. Our result is in the spirit of [11], where multifunctions of only one variable are considered.

Method of averaging for the system of functional-differential inclusions

Teresa Janiak, Elżbieta Łuczak-Kumorek (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The basic idea of this paper is to give the existence theorem and the method of averaging for the system of functional-differential inclusions of the form ⎧ ( t ) F ( t , x t , y t ) (0) ⎨ ⎩ ( t ) G ( t , x t , y t ) (1)

Fourier analysis, linear programming, and densities of distance avoiding sets in n

Fernando Mário de Oliveira Filho, Frank Vallentin (2010)

Journal of the European Mathematical Society

Similarity:

We derive new upper bounds for the densities of measurable sets in n which avoid a finite set of prescribed distances. The new bounds come from the solution of a linear programming problem. We apply this method to obtain new upper bounds for measurable sets which avoid the unit distance in dimensions 2 , , 24 . This gives new lower bounds for the measurable chromatic number in dimensions 3 , , 24 . We apply it to get a short proof of a variant of a recent result of Bukh which in turn generalizes theorems...

Measurable envelopes, Hausdorff measures and Sierpiński sets

Márton Elekes (2003)

Colloquium Mathematicae

Similarity:

We show that the existence of measurable envelopes of all subsets of ℝⁿ with respect to the d-dimensional Hausdorff measure (0 < d < n) is independent of ZFC. We also investigate the consistency of the existence of d -measurable Sierpiński sets.

Algebraic genericity of strict-order integrability

Luis Bernal-González (2010)

Studia Mathematica

Similarity:

We provide sharp conditions on a measure μ defined on a measurable space X guaranteeing that the family of functions in the Lebesgue space L p ( μ , X ) (p ≥ 1) which are not q-integrable for any q > p (or any q < p) contains large subspaces of L p ( μ , X ) (without zero). This improves recent results due to Aron, García, Muñoz, Palmberg, Pérez, Puglisi and Seoane. It is also shown that many non-q-integrable functions can even be obtained on any nonempty open subset of X, assuming that X is a topological...

Median for metric spaces

Nacereddine Belili, Henri Heinich (2001)

Applicationes Mathematicae

Similarity:

We consider a Köthe space ( , | | · | | ) of random variables (r.v.) defined on the Lebesgue space ([0,1],B,λ). We show that for any sub-σ-algebra ℱ of B and for all r.v.’s X with values in a separable finitely compact metric space (M,d) such that d(X,x) ∈ for all x ∈ M (we then write X ∈ (M)), there exists a median of X given ℱ, i.e., an ℱ-measurable r.v. Y ∈ (M) such that | | d ( X , Y ) | | | | d ( X , Z ) | | for all ℱ-measurable Z. We develop the basic theory of these medians, we show the convergence of empirical medians and we give...

A pair of linear functional inequalities and a characterization of L p -norm

Dorota Krassowska, Janusz Matkowski (2005)

Annales Polonici Mathematici

Similarity:

It is shown that, under some general algebraic conditions on fixed real numbers a,b,α,β, every solution f:ℝ → ℝ of the system of functional inequalities f(x+a) ≤ f(x)+α, f(x+b) ≤ f(x)+β that is continuous at some point must be a linear function (up to an additive constant). Analogous results for three other similar simultaneous systems are presented. An application to a characterization of L p -norm is given.

True preimages of compact or separable sets for functional analysts

Lech Drewnowski (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We discuss various results on the existence of ‘true’ preimages under continuous open maps between F -spaces, F -lattices and some other spaces. The aim of the paper is to provide accessible proofs of this sort of results for functional-analysts.

The law of large numbers and a functional equation

Maciej Sablik (1998)

Annales Polonici Mathematici

Similarity:

We deal with the linear functional equation (E) g ( x ) = i = 1 r p i g ( c i x ) , where g:(0,∞) → (0,∞) is unknown, ( p , . . . , p r ) is a probability distribution, and c i ’s are positive numbers. The equation (or some equivalent forms) was considered earlier under different assumptions (cf. [1], [2], [4], [5] and [6]). Using Bernoulli’s Law of Large Numbers we prove that g has to be constant provided it has a limit at one end of the domain and is bounded at the other end.