Displaying similar documents to “Total domination edge critical graphs with maximum diameter”

The Connectivity Of Domination Dot-Critical Graphs With No Critical Vertices

Michitaka Furuya (2014)

Discussiones Mathematicae Graph Theory

Similarity:

An edge of a graph is called dot-critical if its contraction decreases the domination number. A graph is said to be dot-critical if all of its edges are dot-critical. A vertex of a graph is called critical if its deletion decreases the domination number. In A note on the domination dot-critical graphs, Discrete Appl. Math. 157 (2009) 3743-3745, Chen and Shiu constructed for each even integer k ≥ 4 infinitely many k-dot-critical graphs G with no critical vertices and k(G) = 1. In this...

Generalized matrix graphs and completely independent critical cliques in any dimension

John J. Lattanzio, Quan Zheng (2012)

Discussiones Mathematicae Graph Theory

Similarity:

For natural numbers k and n, where 2 ≤ k ≤ n, the vertices of a graph are labeled using the elements of the k-fold Cartesian product Iₙ × Iₙ × ... × Iₙ. Two particular graph constructions will be given and the graphs so constructed are called generalized matrix graphs. Properties of generalized matrix graphs are determined and their application to completely independent critical cliques is investigated. It is shown that there exists a vertex critical graph which admits a family of k...

Critical Graphs for R(P n , P m ) and the Star-Critical Ramsey Number for Paths

Jonelle Hook (2015)

Discussiones Mathematicae Graph Theory

Similarity:

The graph Ramsey number R(G,H) is the smallest integer r such that every 2-coloring of the edges of Kr contains either a red copy of G or a blue copy of H. The star-critical Ramsey number r∗(G,H) is the smallest integer k such that every 2-coloring of the edges of Kr − K1,r−1−k contains either a red copy of G or a blue copy of H. We will classify the critical graphs, 2-colorings of the complete graph on R(G,H) − 1 vertices with no red G or blue H, for the path-path Ramsey number. This...

A characterization of diameter-2-critical graphs with no antihole of length four

Teresa Haynes, Michael Henning (2012)

Open Mathematics

Similarity:

A graph G is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. In this paper we characterize the diameter-2-critical graphs with no antihole of length four, that is, the diameter-2-critical graphs whose complements have no induced 4-cycle. Murty and Simon conjectured that the number of edges in a diameter-2-critical graph of order n is at most n 2/4 and that the extremal graphs are complete bipartite graphs with equal size partite sets. As...

A maximum degree theorem for diameter-2-critical graphs

Teresa Haynes, Michael Henning, Lucas Merwe, Anders Yeo (2014)

Open Mathematics

Similarity:

A graph is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. Let G be a diameter-2-critical graph of order n. Murty and Simon conjectured that the number of edges in G is at most ⌊n 2/4⌋ and that the extremal graphs are the complete bipartite graphs K ⌊n/2⌋,⌊n/2⌉. Fan [Discrete Math. 67 (1987), 235–240] proved the conjecture for n ≤ 24 and for n = 26, while Füredi [J. Graph Theory 16 (1992), 81–98] proved the conjecture for n > n 0 where...

Some Toughness Results in Independent Domination Critical Graphs

Nawarat Ananchuen, Watcharaphong Ananchuen (2015)

Discussiones Mathematicae Graph Theory

Similarity:

A subset S of V (G) is an independent dominating set of G if S is independent and each vertex of G is either in S or adjacent to some vertex of S. Let i(G) denote the minimum cardinality of an independent dominating set of G. A graph G is k-i-critical if i(G) = k, but i(G+uv) < k for any pair of non-adjacent vertices u and v of G. In this paper, we establish that if G is a connected 3-i-critical graph and S is a vertex cutset of G with |S| ≥ 3, then [...] improving a result proved...

On k-factor-critical graphs

Odile Favaron (1996)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is said to be k-factor-critical if the removal of any set of k vertices results in a graph with a perfect matching. We study some properties of k-factor-critical graphs and show that many results on q-extendable graphs can be improved using this concept.

Erdős regular graphs of even degree

Andrey A. Dobrynin, Leonid S. Mel&amp;#039;nikov, Artem V. Pyatkin (2007)

Discussiones Mathematicae Graph Theory

Similarity:

In 1960, Dirac put forward the conjecture that r-connected 4-critical graphs exist for every r ≥ 3. In 1989, Erdös conjectured that for every r ≥ 3 there exist r-regular 4-critical graphs. A method for finding r-regular 4-critical graphs and the numbers of such graphs for r ≤ 10 have been reported in [6,7]. Results of a computer search for graphs of degree r = 12,14,16 are presented. All the graphs found are both r-regular and r-connected.

Cyclically 5-edge connected non-bicritical critical snarks

Stefan Grünewald, Eckhard Steffen (1999)

Discussiones Mathematicae Graph Theory

Similarity:

Snarks are bridgeless cubic graphs with chromatic index χ' = 4. A snark G is called critical if χ'(G-{v,w}) = 3, for any two adjacent vertices v and w. For any k ≥ 2 we construct cyclically 5-edge connected critical snarks G having an independent set I of at least k vertices such that χ'(G-I) = 4. For k = 2 this solves a problem of Nedela and Skoviera [6].