A Note On Graphs Representable As Product Graphs
Zlatomir Lukić (1982)
Publications de l'Institut Mathématique
Similarity:
Zlatomir Lukić (1982)
Publications de l'Institut Mathématique
Similarity:
Brandt, Stephan, Brinkmann, Gunnar, Harmuth, Thomas (1998)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Sergiy Kozerenko (2015)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In his PhD thesis [Structural aspects of switching classes, Leiden Institute of Advanced Computer Science, 2001] Hage posed the following problem: “characterize the maximum size graphs in switching classes”. These are called s-maximal graphs. In this paper, we study the properties of such graphs. In particular, we show that any graph with sufficiently large minimum degree is s-maximal, we prove that join of two s-maximal graphs is also an s-maximal graph, we give complete characterization...
Jaroslav Ivančo (2016)
Discussiones Mathematicae Graph Theory
Similarity:
A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.
Amanda Niedzialomski (2016)
Discussiones Mathematicae Graph Theory
Similarity:
For k ∈ ℤ+ and G a simple, connected graph, a k-radio labeling f : V (G) → ℤ+ of G requires all pairs of distinct vertices u and v to satisfy |f(u) − f(v)| ≥ k + 1 − d(u, v). We consider k-radio labelings of G when k = diam(G). In this setting, f is injective; if f is also surjective onto {1, 2, . . . , |V (G)|}, then f is a consecutive radio labeling. Graphs that can be labeled with such a labeling are called radio graceful. In this paper, we give two results on the existence of radio...
Jan Kratochvíl, Peter Mihók, Gabriel Semanišin (1997)
Discussiones Mathematicae Graph Theory
Similarity:
For a simple graph H, →H denotes the class of all graphs that admit homomorphisms to H (such classes of graphs are called hom-properties). We investigate hom-properties from the point of view of the lattice of hereditary properties. In particular, we are interested in characterization of maximal graphs belonging to →H. We also provide a description of graphs maximal with respect to reducible hom-properties and determine the maximum number of edges of graphs belonging to →H.
Bretto, A. (1999)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Brouwer, A.E., Spence, E. (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
W. Wessel (1987)
Applicationes Mathematicae
Similarity:
Marián Klešč, Stefan Schrötter (2011)
Discussiones Mathematicae Graph Theory
Similarity:
Kulli and Muddebihal [V.R. Kulli, M.H. Muddebihal, Characterization of join graphs with crossing number zero, Far East J. Appl. Math. 5 (2001) 87-97] gave the characterization of all pairs of graphs which join product is planar graph. The crossing number cr(G) of a graph G is the minimal number of crossings over all drawings of G in the plane. There are only few results concerning crossing numbers of graphs obtained as join product of two graphs. In the paper, the exact values of crossing...