Displaying similar documents to “Distinguishing graphs by the number of homomorphisms”

Magic and supermagic dense bipartite graphs

Jaroslav Ivanco (2007)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is called magic (supermagic) if it admits a labelling of the edges by pairwise different (and consecutive) positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In the paper we prove that any balanced bipartite graph with minimum degree greater than |V(G)|/4 ≥ 2 is magic. A similar result is presented for supermagic regular bipartite graphs.

The Thickness of Amalgamations and Cartesian Product of Graphs

Yan Yang, Yichao Chen (2017)

Discussiones Mathematicae Graph Theory

Similarity:

The thickness of a graph is the minimum number of planar spanning subgraphs into which the graph can be decomposed. It is a measurement of the closeness to the planarity of a graph, and it also has important applications to VLSI design, but it has been known for only few graphs. We obtain the thickness of vertex-amalgamation and bar-amalgamation of graphs, the lower and upper bounds for the thickness of edge-amalgamation and 2-vertex-amalgamation of graphs, respectively. We also study...

A metric for graphs

Vladimír Baláž, Jaroslav Koča, Vladimír Kvasnička, Milan Sekanina (1986)

Časopis pro pěstování matematiky

Similarity:

Radio Graceful Hamming Graphs

Amanda Niedzialomski (2016)

Discussiones Mathematicae Graph Theory

Similarity:

For k ∈ ℤ+ and G a simple, connected graph, a k-radio labeling f : V (G) → ℤ+ of G requires all pairs of distinct vertices u and v to satisfy |f(u) − f(v)| ≥ k + 1 − d(u, v). We consider k-radio labelings of G when k = diam(G). In this setting, f is injective; if f is also surjective onto {1, 2, . . . , |V (G)|}, then f is a consecutive radio labeling. Graphs that can be labeled with such a labeling are called radio graceful. In this paper, we give two results on the existence of radio...

On Generalized Sierpiński Graphs

Juan Alberto Rodríguez-Velázquez, Erick David Rodríguez-Bazan, Alejandro Estrada-Moreno (2017)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we obtain closed formulae for several parameters of generalized Sierpiński graphs S(G, t) in terms of parameters of the base graph G. In particular, we focus on the chromatic, vertex cover, clique and domination numbers.

Ramseyan properties of graphs.

DeLaVina, Ermelinda, Fajtlowicz, Siemion (1996)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

More on even [a,b]-factors in graphs

Abdollah Khodkar, Rui Xu (2007)

Discussiones Mathematicae Graph Theory

Similarity:

In this note we give a characterization of the complete bipartite graphs which have an even (odd) [a,b]-factor. For general graphs we prove that an a-edge connected graph G with n vertices and with δ(G) ≥ max{a+1,an/(a+b) + a - 2} has an even [a,b]-factor, where a and b are even and 2 ≤ a ≤ b. With regard to the edge-connectivity this result is slightly better than one of the similar results obtained by Kouider and Vestergaard in 2004 and unlike their results, this result has no restriction...

Supermagic Generalized Double Graphs 1

Jaroslav Ivančo (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.

A note on uniquely H-colourable graphs

Anthony Bonato (2007)

Discussiones Mathematicae Graph Theory

Similarity:

For a graph H, we compare two notions of uniquely H-colourable graphs, where one is defined via automorphisms, the second by vertex partitions. We prove that the two notions of uniquely H-colourable are not identical for all H, and we give a condition for when they are identical. The condition is related to the first homomorphism theorem from algebra.