Displaying similar documents to “Paired domination in prisms of graphs”

Generalized connectivity of some total graphs

Yinkui Li, Yaping Mao, Zhao Wang, Zongtian Wei (2021)

Czechoslovak Mathematical Journal

Similarity:

We study the generalized k -connectivity κ k ( G ) as introduced by Hager in 1985, as well as the more recently introduced generalized k -edge-connectivity λ k ( G ) . We determine the exact value of κ k ( G ) and λ k ( G ) for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case k = 3 .

Remarks on D -integral complete multipartite graphs

Pavel Híc, Milan Pokorný (2016)

Czechoslovak Mathematical Journal

Similarity:

A graph is called distance integral (or D -integral) if all eigenvalues of its distance matrix are integers. In their study of D -integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on D -integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs K p 1 , p 2 , p 3 with p 1 < p 2 < p 3 , and K p 1 , p 2 , p 3 , p 4 with p 1 < p 2 < p 3 < p 4 , as well as the infinite classes of distance integral...

On characterization of uniquely 3-list colorable complete multipartite graphs

Yancai Zhao, Erfang Shan (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For each vertex v of a graph G, if there exists a list of k colors, L(v), such that there is a unique proper coloring for G from this collection of lists, then G is called a uniquely k-list colorable graph. Ghebleh and Mahmoodian characterized uniquely 3-list colorable complete multipartite graphs except for nine graphs: K 2 , 2 , r r ∈ 4,5,6,7,8, K 2 , 3 , 4 , K 1 * 4 , 4 , K 1 * 4 , 5 , K 1 * 5 , 4 . Also, they conjectured that the nine graphs are not U3LC graphs. After that, except for K 2 , 2 , r r ∈ 4,5,6,7,8, the others have been proved not...

On 𝓕-independence in graphs

Frank Göring, Jochen Harant, Dieter Rautenbach, Ingo Schiermeyer (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let be a set of graphs and for a graph G let α ( G ) and α * ( G ) denote the maximum order of an induced subgraph of G which does not contain a graph in as a subgraph and which does not contain a graph in as an induced subgraph, respectively. Lower bounds on α ( G ) and α * ( G ) are presented.

A note on the independent domination number versus the domination number in bipartite graphs

Shaohui Wang, Bing Wei (2017)

Czechoslovak Mathematical Journal

Similarity:

Let γ ( G ) and i ( G ) be the domination number and the independent domination number of G , respectively. Rad and Volkmann posted a conjecture that i ( G ) / γ ( G ) Δ ( G ) / 2 for any graph G , where Δ ( G ) is its maximum degree (see N. J. Rad, L. Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than Δ ( G ) / 2 are provided as well.

On the total k-domination number of graphs

Adel P. Kazemi (2012)

Discussiones Mathematicae Graph Theory

Similarity:

Let k be a positive integer and let G = (V,E) be a simple graph. The k-tuple domination number γ × k ( G ) of G is the minimum cardinality of a k-tuple dominating set S, a set that for every vertex v ∈ V, | N G [ v ] S | k . Also the total k-domination number γ × k , t ( G ) of G is the minimum cardinality of a total k -dominating set S, a set that for every vertex v ∈ V, | N G ( v ) S | k . The k-transversal number τₖ(H) of a hypergraph H is the minimum size of a subset S ⊆ V(H) such that |S ∩e | ≥ k for every edge e ∈ E(H). We know that for...

Domination and independence subdivision numbers of graphs

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi (2000)

Discussiones Mathematicae Graph Theory

Similarity:

The domination subdivision number s d γ ( G ) of a graph is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number. Arumugam showed that this number is at most three for any tree, and conjectured that the upper bound of three holds for any graph. Although we do not prove this interesting conjecture, we give an upper bound for the domination subdivision number for any graph G in terms of the minimum degrees of...

Roman bondage in graphs

Nader Jafari Rad, Lutz Volkmann (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A Roman dominating function on a graph G is a function f:V(G) → 0,1,2 satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f ( V ( G ) ) = u V ( G ) f ( u ) . The Roman domination number, γ R ( G ) , of G is the minimum weight of a Roman dominating function on G. In this paper, we define the Roman bondage b R ( G ) of a graph G with maximum degree at least two to be the minimum cardinality of all sets E’ ⊆ E(G)...

Nearly complete graphs decomposable into large induced matchings and their applications

Noga Alon, Ankur Moitra, Benjamin Sudakov (2013)

Journal of the European Mathematical Society

Similarity:

We describe two constructions of (very) dense graphs which are edge disjoint unions of large induced matchings. The first construction exhibits graphs on N vertices with ( N 2 ) - o ( N 2 ) edges, which can be decomposed into pairwise disjoint induced matchings, each of size N 1 - o ( 1 ) . The second construction provides a covering of all edges of the complete graph K N by two graphs, each being the edge disjoint union of at most N 2 - δ induced matchings, where δ > 0 , 076 . This disproves (in a strong form) a conjecture of Meshulam,...

Edit distance measure for graphs

Tomasz Dzido, Krzysztof Krzywdziński (2015)

Czechoslovak Mathematical Journal

Similarity:

In this paper, we investigate a measure of similarity of graphs similar to the Ramsey number. We present values and bounds for g ( n , l ) , the biggest number k guaranteeing that there exist l graphs on n vertices, each two having edit distance at least k . By edit distance of two graphs G , F we mean the number of edges needed to be added to or deleted from graph G to obtain graph F . This new extremal number g ( n , l ) is closely linked to the edit distance of graphs. Using probabilistic methods we show...

Characterization by intersection graph of some families of finite nonsimple groups

Hossein Shahsavari, Behrooz Khosravi (2021)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G , Γ ( G ) , the intersection graph of G , is a simple graph whose vertices are all nontrivial proper subgroups of G and two distinct vertices H and K are adjacent when H K 1 . In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs.

Proper connection number of bipartite graphs

Jun Yue, Meiqin Wei, Yan Zhao (2018)

Czechoslovak Mathematical Journal

Similarity:

An edge-colored graph G is proper connected if every pair of vertices is connected by a proper path. The proper connection number of a connected graph G , denoted by pc ( G ) , is the smallest number of colors that are needed to color the edges of G in order to make it proper connected. In this paper, we obtain the sharp upper bound for pc ( G ) of a general bipartite graph G and a series of extremal graphs. Additionally, we give a proper 2 -coloring for a connected bipartite graph G having δ ( G ) 2 and a dominating...

Intrinsic linking and knotting are arbitrarily complex

Erica Flapan, Blake Mellor, Ramin Naimi (2008)

Fundamenta Mathematicae

Similarity:

We show that, given any n and α, any embedding of any sufficiently large complete graph in ℝ³ contains an oriented link with components Q₁, ..., Qₙ such that for every i ≠ j, | l k ( Q i , Q j ) | α and | a ( Q i ) | α , where a ( Q i ) denotes the second coefficient of the Conway polynomial of Q i .

Edge-sum distinguishing labeling

Jan Bok, Nikola Jedličková (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study edge-sum distinguishing labeling, a type of labeling recently introduced by Z. Tuza (2017) in context of labeling games. An ESD labeling of an n -vertex graph G is an injective mapping of integers 1 to l to its vertices such that for every edge, the sum of the integers on its endpoints is unique. If l equals to n , we speak about a canonical ESD labeling. We focus primarily on structural properties of this labeling and show for several classes of graphs if they have or do not...