The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Closed k-stop distance in graphs”

Radio number for some thorn graphs

Ruxandra Marinescu-Ghemeci (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For a graph G and any two vertices u and v in G, let d(u,v) denote the distance between u and v and let diam(G) be the diameter of G. A multilevel distance labeling (or radio labeling) for G is a function f that assigns to each vertex of G a positive integer such that for any two distinct vertices u and v, d(u,v) + |f(u) - f(v)| ≥ diam(G) + 1. The largest integer in the range of f is called the span of f and is denoted span(f). The radio number of G, denoted rn(G), is the minimum span...

Cores and shells of graphs

Allan Bickle (2013)

Mathematica Bohemica

Similarity:

The k -core of a graph G , C k ( G ) , is the maximal induced subgraph H G such that δ ( G ) k , if it exists. For k > 0 , the k -shell of a graph G is the subgraph of G induced by the edges contained in the k -core and not contained in the ( k + 1 ) -core. The core number of a vertex is the largest value for k such that v C k ( G ) , and the maximum core number of a graph, C ^ ( G ) , is the maximum of the core numbers of the vertices of G . A graph G is k -monocore if C ^ ( G ) = δ ( G ) = k . This paper discusses some basic results on the structure of k -cores and...

On integral sum graphs with a saturated vertex

Zhibo Chen (2010)

Czechoslovak Mathematical Journal

Similarity:

As introduced by F. Harary in 1994, a graph G is said to be an i n t e g r a l s u m g r a p h if its vertices can be given a labeling f with distinct integers so that for any two distinct vertices u and v of G , u v is an edge of G if and only if f ( u ) + f ( v ) = f ( w ) for some vertex w in G . We prove that every integral sum graph with a saturated vertex, except the complete graph K 3 , has edge-chromatic number equal to its maximum degree. (A vertex of a graph G is said to be if it is adjacent to every...

Minimum degree, leaf number and traceability

Simon Mukwembi (2013)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite connected graph with minimum degree δ . The leaf number L ( G ) of G is defined as the maximum number of leaf vertices contained in a spanning tree of G . We prove that if δ 1 2 ( L ( G ) + 1 ) , then G is 2-connected. Further, we deduce, for graphs of girth greater than 4, that if δ 1 2 ( L ( G ) + 1 ) , then G contains a spanning path. This provides a partial solution to a conjecture of the computer program Graffiti.pc [DeLaVi na and Waller, Spanning trees with many leaves and average distance, Electron. J. Combin....

The independent resolving number of a graph

Gary Chartrand, Varaporn Saenpholphat, Ping Zhang (2003)

Mathematica Bohemica

Similarity:

For an ordered set W = { w 1 , w 2 , , w k } of vertices in a connected graph G and a vertex v of G , the code of v with respect to W is the k -vector c W ( v ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) . The set W is an independent resolving set for G if (1) W is independent in G and (2) distinct vertices have distinct codes with respect to W . The cardinality of a minimum independent resolving set in G is the independent resolving number i r ( G ) . We study the existence of independent resolving sets in graphs, characterize all nontrivial connected graphs G of order...