Displaying similar documents to “Radio number for some thorn graphs”

Radius-invariant graphs

Vojtech Bálint, Ondrej Vacek (2004)

Mathematica Bohemica

Similarity:

The eccentricity e ( v ) of a vertex v is defined as the distance to a farthest vertex from v . The radius of a graph G is defined as a r ( G ) = min u V ( G ) { e ( u ) } . A graph G is radius-edge-invariant if r ( G - e ) = r ( G ) for every e E ( G ) , radius-vertex-invariant if r ( G - v ) = r ( G ) for every v V ( G ) and radius-adding-invariant if r ( G + e ) = r ( G ) for every e E ( G ¯ ) . Such classes of graphs are studied in this paper.

Vertex-disjoint stars in graphs

Katsuhiro Ota (2001)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper, we give a sufficient condition for a graph to contain vertex-disjoint stars of a given size. It is proved that if the minimum degree of the graph is at least k+t-1 and the order is at least (t+1)k + O(t²), then the graph contains k vertex-disjoint copies of a star K 1 , t . The condition on the minimum degree is sharp, and there is an example showing that the term O(t²) for the number of uncovered vertices is necessary in a sense.

The independent resolving number of a graph

Gary Chartrand, Varaporn Saenpholphat, Ping Zhang (2003)

Mathematica Bohemica

Similarity:

For an ordered set W = { w 1 , w 2 , , w k } of vertices in a connected graph G and a vertex v of G , the code of v with respect to W is the k -vector c W ( v ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) . The set W is an independent resolving set for G if (1) W is independent in G and (2) distinct vertices have distinct codes with respect to W . The cardinality of a minimum independent resolving set in G is the independent resolving number i r ( G ) . We study the existence of independent resolving sets in graphs, characterize all nontrivial connected graphs G of order...

Minus total domination in graphs

Hua Ming Xing, Hai-Long Liu (2009)

Czechoslovak Mathematical Journal

Similarity:

A three-valued function f V { - 1 , 0 , 1 } defined on the vertices of a graph G = ( V , E ) is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every v V , f ( N ( v ) ) 1 , where N ( v ) consists of every vertex adjacent to v . The weight of an MTDF is f ( V ) = f ( v ) , over all vertices v V . The minus total domination number of a graph G , denoted γ t - ( G ) , equals the minimum weight of an MTDF of G . In this paper, we discuss some properties of minus total domination on a graph...