Displaying similar documents to “Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities”

A priori error estimates for a state-constrained elliptic optimal control problem

Arnd Rösch, Simeon Steinig (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We examine an elliptic optimal control problem with control and state constraints in ℝ. An improved error estimate of 𝒪( ) with 3/4 ≤ ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.

error estimates for a state-constrained elliptic optimal control problem

Arnd Rösch, Simeon Steinig (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We examine an elliptic optimal control problem with control and state constraints in ℝ. An improved error estimate of 𝒪( ) with 3/4 ≤ ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.

error estimates for a state-constrained elliptic optimal control problem

Arnd Rösch, Simeon Steinig (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We examine an elliptic optimal control problem with control and state constraints in ℝ. An improved error estimate of 𝒪( ) with 3/4 ≤ ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.

New regularity results and improved error estimates for optimal control problems with state constraints

Eduardo Casas, Mariano Mateos, Boris Vexler (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we are concerned with a distributed optimal control problem governed by an elliptic partial differential equation. State constraints of box type are considered. We show that the Lagrange multiplier associated with the state constraints, which is known to be a measure, is indeed more regular under quite general assumptions. We discretize the problem by continuous piecewise linear finite elements and we are able to prove that, for the case of a linear equation, the order...

Relaxation of optimal control problems in L-SPACES

Nadir Arada (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider control problems governed by semilinear parabolic equations with pointwise state constraints and controls in an -space ( < ∞). We construct a correct relaxed problem, prove some relaxation results, and derive necessary optimality conditions.

Mean-Field Optimal Control

Massimo Fornasier, Francesco Solombrino (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We introduce the concept of which is the rigorous limit process connecting finite dimensional optimal control problems with ODE constraints modeling multi-agent interactions to an infinite dimensional optimal control problem with a constraint given by a PDE of Vlasov-type, governing the dynamics of the probability distribution of interacting agents. While in the classical mean-field theory one studies the behavior of a large number of small individuals with each other, by simplifying...

A certified reduced basis method for parametrized elliptic optimal control problems

Mark Kärcher, Martin A. Grepl (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper, we employ the reduced basis method as a surrogate model for the solution of linear-quadratic optimal control problems governed by parametrized elliptic partial differential equations. We present error estimation and dual procedures that provide rigorous bounds for the error in several quantities of interest: the optimal control, the cost functional, and general linear output functionals of the control, state, and adjoint variables. We show that, based on the assumption...

Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints

Anton Schiela, Daniel Wachsmuth (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In the article an optimal control problem subject to a stationary variational inequality is investigated. The optimal control problem is complemented with pointwise control constraints. The convergence of a smoothing scheme is analyzed. There, the variational inequality is replaced by a semilinear elliptic equation. It is shown that solutions of the regularized optimal control problem converge to solutions of the original one. Passing to the limit in the optimality system of the regularized...

Feedback in state constrained optimal control

Francis H. Clarke, Ludovic Rifford, R. J. Stern (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

An optimal control problem is studied, in which the state is required to remain in a compact set . A control feedback law is constructed which, for given ε > 0, produces -optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in . The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of and a related trajectory tracking result. The control feedback is shown to possess...

A finite element discretization of the contact between two membranes

Faker Ben Belgacem, Christine Bernardi, Adel Blouza, Martin Vohralík (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish and error estimates.