A finite element discretization of the contact between two membranes
Faker Ben Belgacem; Christine Bernardi; Adel Blouza; Martin Vohralík
ESAIM: Mathematical Modelling and Numerical Analysis (2008)
- Volume: 43, Issue: 1, page 33-52
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBen Belgacem, Faker, et al. "A finite element discretization of the contact between two membranes." ESAIM: Mathematical Modelling and Numerical Analysis 43.1 (2008): 33-52. <http://eudml.org/doc/194445>.
@article{BenBelgacem2008,
abstract = {
From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.
},
author = {Ben Belgacem, Faker, Bernardi, Christine, Blouza, Adel, Vohralík, Martin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Unilateral contact; variational inequalities; finite elements; a priori and a posteriori analysis.; well-posedness; error estimates},
language = {eng},
month = {10},
number = {1},
pages = {33-52},
publisher = {EDP Sciences},
title = {A finite element discretization of the contact between two membranes},
url = {http://eudml.org/doc/194445},
volume = {43},
year = {2008},
}
TY - JOUR
AU - Ben Belgacem, Faker
AU - Bernardi, Christine
AU - Blouza, Adel
AU - Vohralík, Martin
TI - A finite element discretization of the contact between two membranes
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2008/10//
PB - EDP Sciences
VL - 43
IS - 1
SP - 33
EP - 52
AB -
From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.
LA - eng
KW - Unilateral contact; variational inequalities; finite elements; a priori and a posteriori analysis.; well-posedness; error estimates
UR - http://eudml.org/doc/194445
ER -
References
top- M. Ainsworth, J.T. Oden and C.Y. Lee, Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differential Equations9 (1993) 23–33.
- F. Ali Mehmeti and S. Nicaise, Nonlinear interaction problems. Nonlinear Anal. Theory Methods Appl.20 (1993) 27–61.
- C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques & Applications45. Springer-Verlag (2004).
- H. Brezis and G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques. Bull. Soc. Math. France96 (1968) 153–180.
- F. Brezzi, W.W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, II. Mixed methods. Numer. Math.31 (1978-1979) 1–16.
- Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math.84 (2000) 527–548.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York, Oxford (1978).
- P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17–351.
- P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér.9 R2 (1975) 77–84.
- I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod & Gauthier-Villars (1974).
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986).
- P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985).
- J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1996) 313–485.
- P. Hild and S. Nicaise, Residual a posteriori error estimators for contact problems in elasticity. ESAIM: M2AN41 (2007) 897–923.
- J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure Appl. Math.20 (1967) 493–519.
- R.H. Nochetto, K.G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math.95 (2003) 163–195.
- G. Raugel, Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Sér. A-B286 (1978) A791–A794.
- L. Slimane, A. Bendali and P. Laborde, Mixed formulations for a class of variational inequalities. ESAIM: M2AN38 (2004) 177–201.
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996).
- B.I. Wohlmuth, An a posteriori error estimator for two body contact problems on non-matching meshes. J. Sci. Computing33 (2007) 25–45.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.