A finite element discretization of the contact between two membranes

Faker Ben Belgacem; Christine Bernardi; Adel Blouza; Martin Vohralík

ESAIM: Mathematical Modelling and Numerical Analysis (2008)

  • Volume: 43, Issue: 1, page 33-52
  • ISSN: 0764-583X

Abstract

top
From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.

How to cite

top

Ben Belgacem, Faker, et al. "A finite element discretization of the contact between two membranes." ESAIM: Mathematical Modelling and Numerical Analysis 43.1 (2008): 33-52. <http://eudml.org/doc/194445>.

@article{BenBelgacem2008,
abstract = { From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates. },
author = {Ben Belgacem, Faker, Bernardi, Christine, Blouza, Adel, Vohralík, Martin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Unilateral contact; variational inequalities; finite elements; a priori and a posteriori analysis.; well-posedness; error estimates},
language = {eng},
month = {10},
number = {1},
pages = {33-52},
publisher = {EDP Sciences},
title = {A finite element discretization of the contact between two membranes},
url = {http://eudml.org/doc/194445},
volume = {43},
year = {2008},
}

TY - JOUR
AU - Ben Belgacem, Faker
AU - Bernardi, Christine
AU - Blouza, Adel
AU - Vohralík, Martin
TI - A finite element discretization of the contact between two membranes
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2008/10//
PB - EDP Sciences
VL - 43
IS - 1
SP - 33
EP - 52
AB - From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.
LA - eng
KW - Unilateral contact; variational inequalities; finite elements; a priori and a posteriori analysis.; well-posedness; error estimates
UR - http://eudml.org/doc/194445
ER -

References

top
  1. M. Ainsworth, J.T. Oden and C.Y. Lee, Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differential Equations9 (1993) 23–33.  
  2. F. Ali Mehmeti and S. Nicaise, Nonlinear interaction problems. Nonlinear Anal. Theory Methods Appl.20 (1993) 27–61.  
  3. C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques & Applications45. Springer-Verlag (2004).  
  4. H. Brezis and G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques. Bull. Soc. Math. France96 (1968) 153–180.  
  5. F. Brezzi, W.W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, II. Mixed methods. Numer. Math.31 (1978-1979) 1–16.  
  6. Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math.84 (2000) 527–548.  
  7. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York, Oxford (1978).  
  8. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17–351.  
  9. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér.9 R2 (1975) 77–84.  
  10. I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod & Gauthier-Villars (1974).  
  11. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986).  
  12. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985).  
  13. J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1996) 313–485.  
  14. P. Hild and S. Nicaise, Residual a posteriori error estimators for contact problems in elasticity. ESAIM: M2AN41 (2007) 897–923.  
  15. J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure Appl. Math.20 (1967) 493–519.  
  16. R.H. Nochetto, K.G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math.95 (2003) 163–195.  
  17. G. Raugel, Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Sér. A-B286 (1978) A791–A794.  
  18. L. Slimane, A. Bendali and P. Laborde, Mixed formulations for a class of variational inequalities. ESAIM: M2AN38 (2004) 177–201.  
  19. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996).  
  20. B.I. Wohlmuth, An a posteriori error estimator for two body contact problems on non-matching meshes. J. Sci. Computing33 (2007) 25–45.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.